
RCareGen: An Interface for Scene and Task
Generation in RCareWorld

Shuaixing Chen
Shanghai Jiao Tong University

Shanghai, China
alkdischen@sjtu.edu.cn

Ruolin Ye
Cornell University

Ithaca, NY, United States
ry273@cornell.edu

Saurabh Dingwani
Arizona State University

Tempe, AZ, United States
sdingwan@asu.edu

Pooyan Fazli
Arizona State University

Tempe, AZ, United States
pooyan@asu.edu

Hasti Seifi
Arizona State University

Tempe, AZ, United States
hasti.seifi@asu.edu

Tapomayukh Bhattacharjee
Cornell University

Ithaca, NY, United States
tapomayukh@cornell.edu

Abstract—This late-breaking report presents RCareGen, a
graphical interface that integrates natural language commands
with RCareWorld, a physics simulator for robotic caregiving
scenarios. RCareGen has three core modules: (1) a front-end
web interface, (2) an LLM-based code generator, and (3) the
RCareWorld simulation backend. The front-end web interface
enables novice users to input natural language, which is trans-
lated into Python code by an LLM-based code generator. This
generated code interacts with RCareWorld APIs to run the
simulation backend, facilitating scene setup, modifications, simple
movements, and human-robot interaction tasks. Additionally, the
system supports iterative feedback, allowing users to refine scenes
and tasks interactively. By simplifying simulation setup and
enhancing task diversity, RCareGen introduces a novel interface
that democratizes robot simulation and programming across
diverse domains.

Index Terms—Large Language Models, Robotics Simulator,
Scene Generation

I. INTRODUCTION

Recent advances in simulation platforms have significantly
improved human-robot interaction research [1–3]. However,
significant challenges often hinder the adoption of such plat-
forms. First, these platforms have a steep learning curve,
requiring users to master specialized tools such as Unity or
Python, which can be overwhelming for non-experts. Second,
setting up tasks and environments is labor-intensive and often
results in limited task diversity and creativity.

Our key insight is that large language models (LLMs) can
lower the barrier to using simulation platforms by simplifying
interactions, allowing users to set up tasks and explore scenar-
ios effortlessly through intuitive natural language commands.
Leveraging this insight, we developed RCareGen, a system
that integrates ChatGPT-3.5 [4] with RCareWorld [1], which
is a state-of-the-art simulation platform for caregiving robots,
to simplify simulation environment setup and task execution.
RCareGen consists of three core components: (1) a front-
end web interface for natural language interactions, (2) an
LLM-based code generator that translates prompts into Python
code, and (3) the RCareWorld simulation backend, which

executes the generated code to create and run the simulation
environment.

Users’ interaction with RCareGen begins with scene gen-
eration. They can describe their desired scene using high-
level prompts such as, “Set up a scene with a Franka robot, a
table, and a cup.” in the web interface. The LLM-based code
generator processes this input to Python APIs that retrieve and
load relevant assets into the simulation. Users can refine the
scene iteratively by providing feedback, such as, “Move the
cup 10 cm to the left.” With the generated scene, users can then
perform task generation. By providing an instruction such as
“Train a PPO algorithm to let the robot move the cup forward
by 10cm”, the LLM-based code generator will generate the
code to train and execute the skill for the task.

Through various tasks, we demonstrate how RCareGen
bridges the gap between natural language inputs and exe-
cutable logic, enabling non-experts to configure and engage
with complex simulation environments. RCareGen showcases
the potential of LLMs to democratize access to robotics
simulation platforms and empower users across a wide range
of domains.

We summarize our contributions as the following:
• A platform-agnostic web interface interacting with novice

users using natural language.
• An LLM-based code generator that translates natural

language to Python code.
• RCareGen, an interface enabling natural language-based

scene and task generation for human-robot interaction.
• Demonstrations highlighting the ability to set up scenes,

modify them dynamically using user feedback, generate
simple robot movements, and create human-robot inter-
action tasks.

II. RELATED WORK

A. Code Generation with LLM

Recent work highlights the potential of LLMs to generate ex-
ecutable code for robotics. Code-As-Policies [5] demonstrates

Fig. 1: Overview of the RCareGen system architecture,
demonstrating the interaction between the front-end web
interface, LLM-based code generator, and the RCareWorld
simulation backend.

that LLMs can translate natural language instructions into
executable robot policies. ProgPrompt [6] introduces special-
ized prompting techniques to enhance the reliability of code
generation for robotics. RoboGen [7] focuses on generating
diverse robot behaviors for manipulation tasks in simulated
environments. Our RCareGen leverages the realistic human
avatars in RCareWorld [1], enabling seamless generation of
human-robot interaction tasks.

B. Scene Synthesis in Simulation

Scene synthesis and environment generation in robotics sim-
ulation is an active area of research. iGibson [8] introduces
a framework for creating interactive environments to support
robot learning. AI2-THOR [9] develops methods for proce-
dural generation of indoor environments. Both platforms em-
phasize the importance of diverse, configurable environments
for robotics research but often rely on extensive manual setup.
Recent advancements focus on automating scene generation.
3D-SIS [10] introduces methods to automatically generate
plausible indoor environments, while BEHAVIOR-1K [11]
generates task-relevant environments to enhance robot learn-
ing. RCareGen provides an interface to autonomously generate
the scene, as well as an interface to incorporate user feedback,
making the scene generation more controllable.

III. GENERATING SIMULATION SCENE AND TASK USING
RCAREGEN

A. System Overview

RCareGen features three key components that enable natural
language-driven scene and task generation as shown in Fig-
ure 1:

1) Front-end Web Interface: This interface takes in nat-
ural language instructions from users and visualizes the
simulation scene, providing an intuitive entry point for
interaction. Being web-based, it is platform-agnostic,
ensuring accessibility for users across various devices.

2) LLM-Based Code Generator: Powered by ChatGPT-
3.5 [4], this component translates natural language
prompts into executable Python code using a prompt
template (detailed in Section III-B) to ensure reliability
and consistency.

3) RCareWorld Simulation Backend: This module exe-
cutes the generated code, handling asset loading, scene
configuration, and task execution.

Using the three components, the system allows users to iter-
atively refine scenes or task parameters with natural language
commands.

B. Prompt Specification

We provide the LLM-based code generator with a structured
prompt as follows. The prompt describes (a) the role of GPT,
(b) the available APIs in RCareWorld (including the input to
the function and the returned arguments, and available assets),
(c) objects available in the scene, (d) the format of the output,
(e) example of a relevant code generation task with user input,
and (f) user inputs, such as the robot and objects wanted in
the scene.

Example Prompt (a) Role of GPT You are a robot

control assistant. You should generate Python

code using only these APIs:... (b) Available APIs:

get_object_position...move_to_position... (c) Scene

description ...Box 1 position is: x=0.4, y=0.1,

z=0.1... (d) Output format The format of output should

be a Python file...... Use only the provided APIs... (e)

Examples Below is a simple example of generating code

using RCareWorld APIs (f) User input I want to set up a

scene with...

C. Frontend-Backend Integration

We leverage Gradio [12] to implement the web interface. The
interface includes a Unity WebGL container for visualization
and real-time camera controls, enabling seamless interaction
with loaded assets as shown in Figure 2. The RCareWorld
backend is a pre-built WebGL executable file with the assets
(e.g., human avatars, various robot arms, household objects,
etc.). The frontend interface loads the backend simulation in
the WebGL container.

D. User feedback

RCareGen implements an iterative feedback mechanism that
allows users to provide feedback to modify the generated
scenes through multiple rounds of conversations.

The feedback mechanism involves three key stages:
1) Intent Understanding: The LLM first analyzes the

feedback context, considering the current scene state and
previous feedback if applicable. This contextual under-
standing helps distinguish between absolute commands
(e.g., ”Move the cup 10cm to the left”) and relative
adjustments (e.g., ”Move the cup closer to the robot”). If
the goal is not clearly given, the system performs spatial
reasoning in the next step.

2) Spatial Reasoning: The system maintains a structured
representation of object relationships and constraints for
spatial feedback. When receiving feedback such as ”The

Fig. 2: The front-end web interface of RCareGen with (a) a
Unity scene displaying the robot and objects, (b) movement
control buttons for the camera to adjust the rendered view-
point, (c) a text box to get user inputs, and (d) a logging
terminal.

cup is too far from the robot”, the system calculates
appropriate intermediate positions.

3) Incremental Refinement: Instead of treating each feed-
back as an independent command, the system maintains
a history of adjustments to ensure continuous and co-
herent scene evolution.

IV. DEMONSTRATION

We present three core capabilities of RCareGen: (1) scene
setup and modification, (2) generating simple movements, and
(3) creating human-robot interaction tasks. For each capability,
we demonstrate a user prompt, the corresponding generated
code, user feedback, and the refined code. We also provide a
visualization of the simulation scene. For further details, please
refer to the supplementary video included with the demo.

A. Demonstrating Scene Setup and Modification

This example shows that the user can configure and modify
a scene dynamically using natural language instructions. The
user starts by prompting with "Set up an environment
with a Kinova robot, several bananas, a
mug, and a table. A care recipient sits
next to the table." With this prompt, the LLM
generates the following code:

Fig. 3: Demonstration of three interaction sequences: (a)
Scene modification where the user requests moving a banana
forward; (b) Robot manipulation task where the robot picks
and places the banana next to the mug; and (c) Human-robot
interaction where the robot hands over the banana to the
human avatar. Each sequence shows the user input (left) and
corresponding simulation states (middle, right).

1 load_asset("kinova_robot", position=[0, 0,
0])

2 load_asset("banana1", position=[0.2, 0.1,
0.0])

3 load_asset("banana2", position=[-0.2, 0.1,
0.0])

4 load_asset("banana3", position=[-0.2, 0.05,
0.0])

5 load_asset("mug", position=[0.3, 0.1, 0.0])
6 load_asset("table", position=[0.0, 0.1, 0.0])

The generated code initializes a scene with a Kinova robot,
several bananas, a mug, and a table placed at the respective po-
sitions, and a care recipient sitting by the table. The user then
gives feedback, saying, "Move the rightmost banana
forward by 10 cm." It leads to the following generated
code:

1 # Obtain the banana position
2 pos = get_object_position("banana1")
3 # Grasp the banana
4 pick_object("banana1")
5 # Move the banana forward by 10cm
6 move_to_position(pos[0], pos[1] + 0.1, pos

[2])

This moves the rightmost banana forward by 10cm in the
simulation, as shown in Figure 3a.

B. Demonstrating Programming Simple Movements

This example shows that the user can program robot actions
using natural language instructions after configuring the scene.

The user starts by prompting "Move the rightmost
banana next to the mug." LLM leverages interpo-
lation tools in RCareWorld to plan a trajectory using the
following code:

1 # Grasp the banana
2 pick_object("banana1")
3 # Obtain the mug position
4 mug_pos = get_object_position("mug")
5 # Place the banana next to the mug
6 place_object(mug_pos[0], mug_pos[1] + 0.05,

mug_pos[2])

As shown in Figure 3b, the robot successfully picks up the
banana and places it next to the mug.

C. Demonstrating Human-Robot Interaction Tasks

Leveraging the human avatars in RCareWorld, RCareGen
seamlessly supports human-robot interaction tasks. With the
prompts for a handover task: "Hand the rightmost
banana over to the human’s hand" it generates
the following code:

1 # Obtain the hand position
2 hand_pos = get_object_position("left_hand")
3 # Grasp the banana
4 pick_object("banana1")
5 # Move to the hand
6 move_to_position(hand_pos[0], hand_pos[1] -

0.1, hand_pos[2] + 0.1)
7 # Handover
8 gripper_control(True)
9 move_to_position(hand_pos[0], hand_pos[1] -

0.3, hand_pos[2] + 0.1)

This code programs the robot to hand over the banana to
the human hand, as shown in Figure 3c.

V. EVALUATION

We evaluated the system’s performance in terms of response
timing by running each demonstration scenario described in
Section IV ten times. The tests were conducted on a worksta-
tion equipped with a 12th Gen Intel Core i7-12700 CPU, an
NVIDIA RTX 4060 GPU, and 32 GB of RAM. The time step
in RCareWorld was set to 0.02 seconds. The scene setup and
modification tasks showed an average response time of 2.8 sec-
onds (±0.4 seconds), with scene loading completed in 1.2 sec-
onds (±0.2 seconds). Simple robot movement commands had
an average processing time of 3.2 seconds (±0.5 seconds), with
actual execution taking 1.8 seconds (±0.3 seconds). Human-
robot interaction tasks required slightly longer processing
times, averaging 3.5 seconds (±0.6 seconds) for response
generation and 2.1 seconds (±0.4 seconds) for execution.

We then invited five users (4 female and 1 male, aged 21–53,
mean age 27) to interact with the system and provide feedback.
Users rated the interface on a 10-point Likert scale across
three dimensions: ease of use (8.6/10), usefulness (8.2/10),
and overall satisfaction (8.4/10). They particularly appreciated

the system’s ability to support natural language interaction and
the immediate visual feedback provided by the simulation en-
vironment. Users also found the iterative feedback mechanism
helpful in refining their intentions. However, some noted that
expressing more complex spatial relationships solely through
natural language could be challenging.

These initial results indicate that RCareGen achieves rea-
sonable response times for interactive use while delivering
an engaging user experience. The performance metrics show
that system latency is primarily influenced by the LLM-based
code generation process rather than simulation execution. This
latency could potentially be reduced by using more lightweight
LLMs.

VI. DISCUSSION

Based on our current implementation and initial feedback, we
identify several key directions for future development:

1) Enhanced Spatial Reasoning: While our current LLM-
based approach handles basic spatial relationships effec-
tively, complex spatial reasoning remains challenging.
Integrating specialized geometric reasoning modules and
semantic scene graphs can potentially improve the sys-
tem’s understanding of spatial relationships.

2) Complex Scenario Generation: While we demonstrate
scenes with some complexity for human-robot interac-
tion, more complicated scenes can be challenging to
generate, especially when there are dynamic components
or a wide variety of objects. Current advancements in
asset generation has the potential to narrow this gap.

3) Sim-to-Real: Like any simulation platform, RCareGen
faces sim-to-real challenges. We envision leveraging more
advanced sim-to-real pipelines to create digital twins that
align more closely with the real world.

4) Advanced Feedback Processing: Building on our cur-
rent feedback mechanism, we have identified the follow-
ing ways to improve RCareGen:

– Learning from user feedback patterns to improve
system responses.

– Supporting multi-modal feedback combining natural
language, gestures, and visual indicators.

– Developing personalized interaction models that
adapt to individual user preferences.

By combining a web-based interface, LLM-based code gen-
eration, and robust simulation capabilities, RCareGen intro-
duces a novel approach to democratizing robotics simulation
and programming. Furthermore, its scalable and modular de-
sign ensures adaptability for emerging LLM technologies and
evolving user needs. While there are still challenges to address,
particularly in complex spatial reasoning and real-world imple-
mentation, the current system provides a foundation for more
intuitive and accessible human-robot interaction development.
As we continue to enhance the system’s capabilities, we
believe RCareGen will contribute to broadening participation
in robotics research and development across diverse domains.

REFERENCES

[1] R. Ye, W. Xu, H. Fu, R. K. Jenamani, V. Nguyen, C. Lu, K. Dim-
itropoulou, and T. Bhattacharjee, “RCareWorld: A human-centric simu-
lation world for caregiving robots,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 33–40, 2022.

[2] Z. Erickson, V. Gangaram, A. Kapusta, C. K. Liu, and C. C. Kemp,
“Assistive gym: A physics simulation framework for assistive robotics,”
in IEEE International Conference on Robotics and Automation (ICRA),
2020.

[3] Y. Wang, Z. Sun, Z. Erickson, and D. Held, “One policy to dress
them all: Learning to dress people with diverse poses and garments,” in
Robotics: Science and Systems (RSS), 2023.

[4] OpenAI, “Gpt-3.5.” https://platform.openai.com/docs/models/gpt-3-5,
2023. Accessed: 2025-01-12.

[5] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as policies: Language model programs for embodied
control,” in arXiv preprint arXiv:2209.07753, 2022.

[6] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox,
J. Thomason, and A. Garg, “Progprompt: Generating situated robot task
plans using large language models,” in IEEE International Conference
on Robotics and Automation (ICRA), pp. 11523–11530, 2023.

[7] Y. Wang, Z. Xian, F. Chen, T.-H. Wang, Y. Wang, K. Fragkiadaki,
Z. Erickson, D. Held, and C. Gan, “RoboGen: Towards unleashing
infinite data for automated robot learning via generative simulation,”
in International Conference on Machine Learning (ICML), pp. 51936–
51983, 2024.

[8] C. Li, F. Xia, R. Martı́n-Martı́n, M. Lingelbach, S. Srivastava, B. Shen,
K. E. Vainio, C. Gokmen, G. Dharan, T. Jain, A. Kurenkov, K. Liu,
H. Gweon, J. Wu, L. Fei-Fei, and S. Savarese, “igibson 2.0: Object-
centric simulation for robot learning of everyday household tasks,” in
Conference on Robot Learning (CoRL), pp. 455–465, 2022.

[9] “AI2-THOR: An Interactive 3D Environment for Visual AI,” ArXiv,
vol. abs/1712.05474, 2017.

[10] J. Hou, A. Dai, and M. Nießner, “3d-sis: 3d semantic instance segmen-
tation of rgb-d scans,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

[11] C. Li, R. Zhang, J. Wong, C. Gokmen, S. Srivastava, R. Martı́n-Martı́n,
C. Wang, G. Levine, W. Ai, B. Martinez, et al., “Behavior-1k: A human-
centered, embodied ai benchmark with 1,000 everyday activities and
realistic simulation,” arXiv preprint arXiv:2403.09227, 2024.

[12] A. Abid, A. Abdalla, A. Abid, D. Khan, and M. Hraiz, “Gradio: Sim-
plifying machine learning model interfaces.” https://gradio.app, 2019.

https://platform.openai.com/docs/models/gpt-3-5
https://gradio.app

	Introduction
	Related Work
	Code Generation with LLM
	Scene Synthesis in Simulation

	Generating Simulation Scene and Task using RCareGen
	System Overview
	Prompt Specification
	Frontend-Backend Integration
	User feedback

	Demonstration
	Demonstrating Scene Setup and Modification
	Demonstrating Programming Simple Movements
	Demonstrating Human-Robot Interaction Tasks

	Evaluation
	Discussion
	References

