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Abstract

Distributed coverage aims to deploy a team of robots to move around a target area

to perform sensing, monitoring, data collection, search, or distributed servicing

tasks. This thesis investigates three variations of the coverage problem.

First, we address the multi-robot single coverage of a target area. The aim is

to guarantee that every accessible point in the area is visited in a finite time. The

proposed algorithm supports heterogeneous robots having various maximal speeds,

and is robust to robot failure. It also balances the workload distribution among the

robots based on their maximal speeds. The obtained results on the coverage time

are scalable to workspaces of different sizes, and robots of varied visual ranges.

Second, we tackle the multi-robot repeated coverage of a target area. The ob-

jective is to visit all the accessible points of the area repeatedly over time, while

optimizing some performance criteria. We introduce four repeated coverage algo-

rithms, and evaluate them under a comprehensive set of metrics including the sum

of the paths/tours generated for the robots, the frequency of visiting the points in the

target area, and the degree of balance in workload distribution among the robots.

We also investigate the effects of environment representation, and the robots’ vi-

sual range on the performance of the proposed algorithms. The results can be used

as a framework for choosing an appropriate combination of repeated coverage al-

gorithm, environment representation, and the robots’ visual range based on the

particular workspace and the metric to be optimized.

Third, we focus on the multi-robot repeated coverage of the boundaries of a

target area and the structures inside it. Events may occur at any position on the

boundaries, and the robots are not a priori aware of the event distribution. The

goal is to maximize the total detection reward of the events. The reward a robot
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receives for detecting an event depends on how early the event is detected. To this

end, we introduce an online, distributed algorithm and investigate the effects of

robots’ visual range, communication among the robots, and the event frequency on

the performance of the algorithm.
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Chapter 1

Introduction

Given the dynamic and uncertain environments in which future robots will have to

work compared with those of the familiar and relatively simple industrial robots,

the integration of the advanced physical and cognitive systems required by the next

generation of robots is a challenging task. It is not feasible to design a ‘universal’

robot capable of working within a wide range of applications. AIBO [59], Naoa,

and PR2b are examples of the challenges of cost, long product life cycle and limited

functionality which will apply to future robots as well. Given these challenges,

multi-robot systems may be suitable alternatives to single-robot systems in many

real world applications.

The topic of multi-robot systems has been extensively investigated over the past

decades [23, 38, 45, 62, 106]. The most common motivations for developing multi-

robot system solutions in real world applications are that a single robot cannot deal

with the task complexity adequately; the task is spatiotemporally distributed; build-

ing several niche, resource-bound robots is easier than building a single powerful

robot; multiple robots can support parallelism; and finally, redundancy increases

robustness [105, 106].

Distributed Area/Boundary Coverage, as a task for multi-robot systems, is a

challenging problem in different scenarios such as search and rescue operations

[75], planetary exploration [95], landmine detection [3], intruder detection [63, 83],

ahttp://www.aldebaran-robotics.com/en/
bhttp://www.willowgarage.com/pages/pr2/overview
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environment monitoring [84], forest monitoring [25, 26, 77, 96], ocean monitoring

[123], floor cleaning [70, 102, 103, 104], and so on.

In Area Coverage, a team of robots cooperatively visits (observes or sweeps)

an entire area once or repeatedly over time. Another class of problems is Bound-

ary Coverage in which the aim of the robot team is to repeatedly visit (observes

or sweeps) the boundaries of a target area and the structures inside rather than

complete coverage of the area. There are two classes of coverage problems:

• Single Coverage: The robot team aims to guarantee that every accessible

point in the area is visited in a finite time.

• Repeated Coverage: The robot team visits all the accessible points in the

target area, or just on the boundaries repeatedly over time, while achieving

one of the tasks below:

– maximizing the frequency of visiting the points.

– minimizing the sum of the paths/tours generated for the robots.

– balancing the workload distribution among the robots.

– detecting the maximum number of events occuring in the target area or

just on the boundaries.

– minimizing the event detection time.

Visiting the points can be accomplished with uniform or non-uniform fre-

quency.

There is a confusion in the literature regarding the terms Exploration and Cov-

erage. To clarify the problem definition, we note that in exploration, we have an

unknown environment in which a team of robots is trying to build a map of the area

together [14, 20, 72, 122, 134, 135]. In contrast, in a coverage problem, the map

of the environment may be known or unknown and the team aims to cooperatively

visit the whole area or just the boundary with their sensors or physical actuators.

In other words, building a map of the environment is not the ultimate aim of the

coverage problem.
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In this thesis we address three variations of the coverage problem, which all have

the following two assumptions in common:

• The workspace, W ⊂ R2, is a given polygon containing polygonal obsta-

cles/structures.

• The robots, R, are assumed to have a 360 ◦ field of view and a predefined

circular limit of visual range.

1.1 On Multi-Robot Single Area Coverage
In the first part of the thesis, we address the problem of multi-robot single cov-

erage of a target area. We propose an algorithm which guarantees completeness,

in that every accessible point in the area is visited in a finite time by at least one

of the paths assigned to the robots. It supports heterogeneous robots having vari-

ous maximal speeds, and supports robustness by handling individual robot failure.

The algorithm also balances the workload distribution among the robots based on

their maximal speeds. Finally, it is shown that the obtained results on the coverage

time of the sample environments are scalable to workspaces of different sizes, and

robots of varied visual ranges.

1.2 On Multi-Robot Repeated Area Coverage
In the second part of the thesis, we tackle the problem of multi-robot repeated

coverage of a target area. We introduce four repeated coverage algorithms, and

evaluate their performance under a comprehensive set of metrics including the sum

of the paths/tours generated for the robots, the frequency of visiting the points in the

target area, and the degree of balance in workload distribution among the robots.

We also investigate the effects of environment representation, and the robots’ visual

range on the performance of the proposed algorithms.

Given that it is not possible to develop polynomial approximation algorithms,

when optimizing each of the metrics mentioned above, and the fact that some of

these metrics mutually conflict in the coverage problem, we conduct an extensive

experimental analysis to evaluate the proposed algorithms. The results can be used
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as a framework for choosing an appropriate combination of repeated coverage al-

gorithm, environment representation, and the robots’ visual range based on the

particular workspace and the metric to be optimized.

1.3 On Multi-Robot Repeated Boundary Coverage
In the third part of the thesis, we focus on the problem of multi-robot repeated

coverage of the boundaries of a target area and the structures inside it. Line-of-sight

communication is assumed among the robots. Events may occur at any position on

the boundaries, and the robots are not a priori aware of the event distribution. The

goal is to maximize the total detection reward of the events. The reward a robot

receives for detecting an event depends on how early the event is detected.

To this end, we introduce an online, distributed algorithm, in which each robot

autonomously learns the event distribution on the boundaries. Based on the policy

being learned, each robot then plans in a decentralized manner to select the best

path in the target area to visit the most promising parts of the boundary. The per-

formance of the learning algorithm is compared with a heuristic algorithm for the

Traveling Salesman Problem, on the basis of the total reward collected by the team

during a finite period of time.

We also investigate how robots’ visual range, and communication among the

robots affect the performance of the robot team in the coverage problem, and how

event frequency affects the impact of communication on the robots’ performance.
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Chapter 2

Background and State of the Art

Several research communities including robotics and agents, sensor networks, op-

erations research, and computational geometry work on variants of the coverage

problem.

In sensor networks [34, 61, 112], given an area to be monitored, the aim is to

deploy and locate the minimum number of sensor nodes, so that every point in the

workspace is covered by at least k sensors [73, 139]. In other similar scenarios,

the mobile sensors position themselves in such a way that their density is greater

in areas of the workspace with more sensory interest [119, 120].

In operations research, the Vehicle Routing Problem has some similarities to

the coverage scenarios [65, 128]. In this problem, a number of vehicles deliver

goods located at a central depot to a set of geographically dispersed customers.

The objective is to minimize the total distance travelled. In the Vehicle Routing

Problem with Time Windows, the target locations have time windows within which

the deliveries (or visits) must be made [17, 18, 37, 125], and in the Capacitated

Vehicle Routing Problem, the vehicles have limited carrying capacity for the goods

that must be delivered [113, 129].

In computational geometry, this problem originates from the Art Gallery Prob-

lem [99, 130] and its variant for mobile agents, i.e., the (Multi) Watchman Route

Problem [30, 43, 101]. In the Art Gallery Problem, the goal is to position a mini-

mum number of cameras called guards, sufficient to see every point of the interior

of a gallery (i.e., a simple polygon). In other words, a set of cameras patrols a
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gallery, if every point in the gallery is visible to a camera. Cameras may have

a limited or unlimited visual range. On the other hand, in the (Multi) Watchman

Route Problem the objective is to compute routes (closed curves) agents (watch-

men) should take, such that any point inside the polygon is visible from at least one

of the routes assigned to the agents. Most research done on the above problems

in computational geometry deals with simple polygonal spaces without obstacles,

unlimited range of agents’ vision, single agent scenarios, and scenarios in which

a common initial location is determined for all the agents. Pursuit-Evasion is an-

other closely related problem studied in both the computational geometry and the

robotics communities. In this task, one or more searchers move throughout a given

target area in order to guarantee the detection of all the evaders, which can move

arbitrarily fast [16, 63, 131]. In Pursuit-Evasion scenarios, the searchers do not

necessarily cover the entire target area.

In the robotics community, most research in this area is carried out under the

rubric of Area/Boundary/Perimeter Patrolling. In the rest of this chapter, we ex-

amine the literature related to the Multi-Agent/Robot Patrolling scenarios.

2.1 Single Area Coverage
In a taxonomy presented by Choset [32], the proposed approaches for area cover-

age are divided into offline methods, in which the map of the environment is known,

and online methods, in which the map of the environment is unknown. Choset [32]

further divides the approaches for area coverage based on the methods they em-

ploy for decomposing the area: Exact Cellular Decomposition, and Approximate

Cellular Decomposition.

In Exact Cellular Decomposition, the area is divided into a set of non-

overlapping regions/cells whose union covers the whole environment. Trapezoidal

decomposition [82], Boustrophedon decomposition [31], morse decomposition

[1, 2], and Voronoi Diagrams [19, 33, 94, 109] are instances of Exact Cellular

Decomposition. Thereafter, an adjacency graph is built on the area to connect the

neighboring regions/cells in the workspace, and finally the robots plan their paths

on the graph to cover the workspace.

In Approximate Cellular Decomposition (e.g., grid-based methods), the target
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area is divided into cells which are all the same size and shape. However, cells

that are partially occluded by obstacles or close to the boundaries are discarded,

therefore the union of the cells only approximates the target area. Generally, the

cell size is determined by the size of the robots’ actuator or the sensor range.

The methods based on Approximate Cellular Decomposition have limitations

since they do not consider the structure of the environment and as a result are

unable to handle partially occluded cells or cover areas close to the boundaries in

continuous spaces. In contrast, methods based on Exact Cellular Decomposition do

not suffer those restrictions, so traversing the adjacency graph guarantees covering

the whole area. However, they are not efficient in the sense that they do not have

a clear policy for moving within the cells, and may have many redundant motions

when moving between the cells. The main reason for redundant motions in the

methods based on Exact Cellular Decomposition is that each cell should be covered

entirely before moving to another cell. Sometimes it would be more efficient to

cover a cell partially, and return later to finish covering it.

The single area coverage problem has been studied in various ways. Zelinsky et

al. [137] addressed the offline, complete coverage of grid environments by a single

robot. Spires and Goldsmith [124] suggested an offline, decentralized algorithm to

cover grid and obstacle-free target areas. The proposed method generates a path,

covering the entire area, through computing the Hilbert Space-Filling Curve [116]

of the workspace. The path is then divided among the robots, guaranteeing a robust

and complete coverage of the grid area.

Butler [21] presented a complete, single-robot algorithm for covering an un-

known environment with rectilinear boundaries and obstacles. The environment is

incrementally decomposed into cells in the shape of a rectangle, where each can

be fully covered by back-and-forth motions of a square robot. The work was ex-

tended to a centralized multi-robot setting in [22]. Unrestricted communication is

assumed among the robots.

Huang [74] studied the single-robot coverage problem, in which the given

polygonal workspace is divided into sub-regions, and then each sub-region is swept

in a particular direction, such that the number of turns the robot has to perform to

cover the entire workspace is minimized. The total path travelled and the cost of

moving between the sub-regions is ignored.
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Gabriely and Rimon [60] suggested an offline, complete, single-robot coverage

algorithm for grid environments. In this approach, the robot traverses the path that

circumnavigates the spanning tree built on the grid. Hazon and Kaminka [68]

extended [60] to support multiple robots, by partitioning the spanning tree among

the robots in a centralized manner. Their algorithm comes in two versions. In the

first version, the robots all move in the same direction along the path and no cell is

visited more than once. In the second version, the robots are allowed to backtrack

over their assigned path, and no cell is visited more than twice. The authors showed

that the second version is more efficient and has a better worst-case bound than

the first version in terms of the total time it takes to cover the area. Zheng et al.

[138] addressed the same problem, and proposed an approach outperforming the

previous algorithms. The algorithm is based on dividing the spanning tree into

sub-trees of balanced weights for the robots of the team. The coverage time of

their algorithm is at most eight times greater than optimal. However, the proposed

method is not robust to robot failure. Agmon et al. [4] discussed a more efficient

way of constructing the spanning trees on the grid environments, considering the

initial locations of the robots. The proposed algorithm aims at minimizing the

maximal distance between every two consecutive robots along the spanning tree.

Mannadiar and Rekleitis [90] addressed the complete coverage of a known

workspace in a continuous space by a single robot. The proposed method uses the

Boustrophedon decomposition to partition the free space in cells; then, the solution

to the Chinese Postman Problem is used to calculate the order in which the cells

are going to be covered. The cost of moving between the cells is ignored.

Rekleitis et al. [114] addressed the multi-robot coverage of an unknown envi-

ronment in a continuous space. A Boustrophedon decomposition is incrementally

built on the workspace. In this method, the robot team is divided into sub-teams

of explorer and coverer robots. The explorer robots determine the boundaries of

the detected cells in the free space and the coverer robots then sweep the explored

area by back-and-forth motions. The robots operate under the restriction that com-

munication is available only when they are within line of sight of each other. In

a later work [115], they proposed an auction-based algorithm for the case that an

unrestricted, global communication is assumed among the robots

Luo and Yang [87, 88] employed a neural network to model a given workspace.
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Each neuron, corresponding to a cell in the occupancy grid, shows if the cell is

occupied (by an obstacle), unclean, or clean. They demonstrated their approach for

two [87] and four [88] robots in some simulated environments. While the proposed

approach is complete, it is not efficient, since the robots do redundant movements

to cover the entire area.

Wagner et al. [132] proposed decentralized, ant-based algorithms to cover an

unknown grid. Ant robots are simple robots with limited sensing and computa-

tional capabilities. Communication among the ant robots is done implicitly using

the traces they leave while moving in the area. The proposed algorithms differ in

the amount of memory available to every robot. The robots can also adapt to the

changes made in the grid. However, these algorithms do not guarantee efficiency.

Koenig and Liu [79] studied the behavior of ant robots for online single and

repeated coverage of a grid-imposed target area. The robots implicitly communi-

cate with each other through markings they leave in the area. They compared four

navigation methods that are based on real-time search [80], differing in how the

markings are updated.

Although there is a wide body of literature for single coverage scenarios, re-

peated coverage has not received the same attention. Two classes of the repeated

coverage problem in the literature are: 1) Area Patrolling, and 2) Boundary or

Perimeter Patrolling (Open or Closed Polylines), and each is divided into:

• Optimization-based repeated coverage, in which the team’s goal is to op-

timize some criteria, for example minimizing the average or worst visiting

frequency of the points of interest in the target area, minimizing the total

path traversed by the robots in the environment, or balancing the workload

distribution among the robots.

• Adversarial repeated coverage, in which the team’s goal is to maximize the

probability of detecting an adversary/event or multiple adversaries/events

trying to penetrate/occur in the target area. The main idea behind some

of these patrolling strategies is to use non-deterministic, probabilistic algo-

rithms in order to avoid static patrolling patterns which, in an adversarial

scenario, could be exploited by the intruders.
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2.2 Repeated Area Coverage

2.2.1 Optimization-based Repeated Coverage

Machado et al. [89] studied several architectures for repeated coverage of un-

weighted graphs (i.e., the distance between two adjacent nodes is constant). The

goal was to minimize the time interval between two visits to a node. The pro-

posed architectures differ on various parameters such as agent type (reactive or

goal-oriented), agent communication (centralized, peer-to-peer, flag-based, or no-

communication), coordination scheme (centralized vs. distributed), agent percep-

tion (local vs. global), and decision-making (random selection vs. goal-oriented

selection). They showed that the Conscientious Reactive Agents architecture out-

performs the other multi-agent architectures. An agent in Conscientious Reactive

Agents chooses a node to visit from its neighbourhood with the highest time of

being unvisited relative to the agent’s own visits rather than all the other agents’

visits. No communication is assumed among the agents. The work is generalized

to weighted graphs in [10]

Santana et al. [118] studied adaptive agents learning to patrol weighted graphs

to minimize the time intervals between visits to the nodes. A Markov Decision

Process (MDP) formalism was used to model the patrolling problem. The chal-

lenge was to define a state and action space for each agent individually, and to

develop proper models of instantaneous rewards which could lead to satisfactory

long term performance. The Q-Learning algorithm was used to train the agents,

which proved to be computationally expensive.

A problem with some of the existing empirical studies in the field of area pa-

trolling is the lack of a comprehensive population of environment maps in the ex-

periments. In the works by Almeida et al. [10] and Machado et al. [89] only six

maps were used to evaluate the coverage algorithms, two of which have almost

75% similarity. In two other maps called ‘circular’ and ‘corridor’, only one rep-

resentation of the environment (i.e., a chain) is possible due to the structure of the

environments. Santana et al. [118] also used two very similar maps to evaluate the

proposed patrolling algorithm. Moreover, in none of the above patrolling tasks, did

the authors provide details on how the graph is built to represent the environment.
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They typically assume the existence of a graph which is not a complete model of

the environment, but just a rough approximation of it. The proposed architectures

also consider the agents as points with no extent or limit on visual range, so the

problem dealt with is reduced to a graph exploration/coverage task rather than an

area coverage scenario.

Elmaliach et al. [42] proposed a centralized algorithm, guaranteeing maximal

uniform frequency, in a non-uniform, grid environment. As mentioned above, grid-

based representations have limitations in handling partially occluded cells or cover

areas close to the boundaries. Also, one of the limitations of the proposed approach

is the requirement for a corridor’s size in the workspace to be at least twice the size

of the robot in order to be covered.

2.2.2 Adversarial Repeated Coverage

Sak et al. [117] considered the adversarial multi-agent patrol problem in general

graphs. The authors assumed three types of intruders in the environment: a random

intruder, an intruder that waits until the patrolling agent leaves a node to penetrate

the area through that node, and an intruder that collects statistics on the period be-

tween the visits to a random node and predicts the timing of the next safe intrtusion

to that node. Some patrolling algorithms were experimentally evaluated by simu-

lation. The results showed that no patrol strategy was optimal for all the possible

adversaries.

Ahmadi et al. [9] addressed the multi-robot repeated coverage of a known grid

target area, in order to detect a set of events of interest. The frequency of the events

occurrence in different parts of the environment could possibly be non-uniform.

Thus, the robots should visit the points of the workspace with non-uniform fre-

quency. The main contribution of the paper is an online algorithm to partition the

area among the robots through a negotiation mechanism. The algorithm is adaptive

to non-uniform frequency of events occurrence in the target area.

Guo et al. [66] studied a centralized multi-robot system for patrolling con-

tinuous environments. The area is partitioned into sub-regions using a Voronoi

Diagram. Robots are then distributed from their initial positions to their assigned

sub-regions to monitor them against the possible intrusions of the adversary agents.
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Game theoretic approaches have attracted increasing attention in adversarial

patrolling. Much of this work has used a Stackelberg leader-follower game frame-

work to model the interactions between the patrolling agents (leaders) and the in-

truders (followers). The patrolling agents act based on a randomized strategy, and

the intruders choose where to attack after surveillance of this randomized strategy

[81]. Two major applications of the Stackelberg game framework are two security

schedulers called ARMOR [110], used at the Los Angeles International Airport

to randomize allocation of the checkpoints and the canine patrols on the roads

towards the airport, and GUARDS [111], used to assist in resource allocation to

security activities for airport protection.

Amigoni et al. [13] used a leader-follower strategy to determine the optimal

policy for a single robot in patrolling a grid environment against an intruder. The

cells of the grid have different payoffs/values for the patrolling robot and the in-

truder. Paruchuri et al. [107, 108] addressed the patrolling problem of a set of

locations of interest in an adversarial scenario. The patrolling agents use policy

randomization to maximize their rewards. The adversary has full knowledge of

the agents, and action randomization can deteriorate the adversary’s capability to

predict and exploit the patrolling agents’ actions.

2.3 Repeated Boundary Coverage

2.3.1 Optimization-based Repeated Coverage

Easton and Burdick [39] modeled the coverage problem of a given boundary as a

k-Rural Postman Problem [40], and used its solution to plan the robots’ inspection

paths. In the k-Rural Postman Problem, the aim is to compute k tours within an

undirected connected weighted graph, such that each edge in a required subset

of edges is traversed in at least one of the tours, at minimum cost. All the tours

start and finish at the same initial node, and all the the k robots involved in the

monitoring task start from this common depot location at the beginning of the

mission. These paths facilitate complete coverage of the boundary and also balance

the workload among the robots of the team. Williams and Burdick [133] extended

the previous work for the case that a revision of the original plan may be required
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due to the changes in the size of the robot team or the shape of the environment.

The proposed algorithm does not guarantee an upper bound on the coverage time

of the boundary.

Elmaliach et al. [41] addressed the frequency-based patrolling of open poly-

lines (e.g., as in open-ended fences), where the two endpoints of the polylines are

not connected. Jensen et al. [76] extended Elmaliach et al.’s work on patrolling

open polylines, with a focus on maintaining the patrol over the long-term. They

accomplish this task by replacing the robots having power level below a threshold

with some reserve robots. Patrolling open perimeters is challenging because robots

must revisit the just visited areas when they reach an endpoint and turn back.

Boardman et al. [15] presented a distributed boundary tracking controller for a

team of robots. Within this system, the boundary is partitioned into sub-segments,

each allocated to a robot, such that the workload is balanced among the robots.

They also aimed at minimizing the phase difference between the robots, to limit

the size of the gap created between the robots.

Marino et al. [91] proposed a decentralized multi-robot approach to patrol both

open and closed polylines. A Finite State Automaton was adopted to implement

the action selection mechanism.

2.3.2 Adversarial Repeated Coverage

Agmon et al. [5] studied patrolling a cyclic boundary, in which the robots’ goal is

to maximize their rewards by detecting an adversary agent, attempting to penetrate

through a point on the boundary unknown to the robots. In their scenario, the full-

knowledge adversary knows the location of the robots and the patrol strategy. The

adversary also needs a predefined time interval to accomplish the intrusion. The

patrolling robots are initially placed uniformly on the perimeter and then move to-

gether clockwise or counter-clockwise randomly in order to reduce the probability

of penetration. The patrol strategy is determined by a probability value, according

to which the robots switch their direction, such that the minimal probability of pen-

etration detection is maximized. They also examined the case of a zero-knowledge

adversary [6] and a partial-knowledge adversary [8] in perimeter patrolling. The

uncertainty in the robots’ perception was investigated in [7], in which the ability to
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detect the intruders decreased as the distance grew. Czyzowicz et al. [35] addressed

the same problem using a team of variable-speed robots.

Girard et al. [64] studied a centralized system composed of multiple unmanned

air vehicles patrolling a border area. The border is represented as a continuous

two-dimensional region divided in sub-regions. Each sub-region is assigned to an

air vehicle that repeatedly patrols it with a spiral trajectory to detect the possible

intrusions.

2.4 Conclusion
In this chapter, we examined the literature related to the three coverage problems

we address in this thesis, namely, Single Area Coverage, Repeated Area Coverage,

and Repeated Boundary Coverage.
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Chapter 3

On Multi-Robot Single Area
Coverage

3.1 Problem Definition and Preliminaries
In this chapter, we address the Multi-Robot Single Area Coverage problem with the

following specifications:

Assumption 3.1. The workspace, W⊂ R2, is a given polygon containing polygo-

nal obstacles.

Assumption 3.2. The robots, R, are assumed to have a 360 ◦ field of view and a

predefined circular limit of visual range.

Assumption 3.3. The |R| robots of the team have various maximal speeds of

v1,v2, . . . ,v|R|. Without loss of generality, it is assumed that the robots are num-

bered such that:

0≤ v1 ≤ v2 ≤ ·· · ≤ v|R|. (3.1)

The goal is to compute paths for the robots, such that any accessible point of

the workspace is visited in a finite time by at least one of the paths assigned to

the robots (Completeness Condition). Our proposed approach improves upon the

coverage algorithms based on Approximate Cellular Decomposition, which ignore
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partially occluded cells or areas close to the boundaries. It is also an improvement

on the algorithms based on Exact Cellular Decomposition, which do not have a

clear policy for moving within the cells, and may have many redundant motions

while moving between the cells in the workspace. The proposed decentralized

single coverage algorithm supports heterogeneous robots having various maximal

speeds, and supports robustness by handling individual robot failure. It also bal-

ances the workload distribution among the robots based on their maximal speeds.

Finally, the coverage algorithm is designed in a way to overcome the restrictive

constraint imposed by the robots’ limited visual range.

In the single area coverage problem, not only is the complete coverage of the

workspace important but also computing efficient paths for the robots is crucial.

Using multiple robots may reduce the Coverage Time by dividing the task among

the robots. The Coverage Time of the workspace is determined as follows:

Coverage Time = max
r∈R

‖Path(r)‖
vr

, (3.2)

where ‖Path(r)‖ is the length of the path assigned to robot r, and vr is

the speed of robot r in the workspace. We show that the obtained re-

sults on the Coverage Time of the sample environments are scalable

to workspaces of different sizes, and robots of varied visual ranges.

Overview: Our single coverage method is composed of three main steps:

1. A set of guards, required to observe a given workspace, is located, consider-

ing the limited visual range constraint of the robots (Section 3.2).

2. A graph is built on the guards and the nodes of the workspace based on the

Constrained Delaunay Triangulation (Section 3.3).

3. Cyclic Coverage Algorithm: Each robot computes the shortest tour on the

Constrained Delaunay Triangulation graph, passing through all the guards

of the workspace, and computes the segment assigned to it on the tour (Sec-

tion 3.4).
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3.2 Locating Guards with Limited Visual Range
In our problem definition, the robots are equipped with panoramic cameras with a

360 ◦ field of view. However, the cameras’ visual range is limited. The proposed

approach initially locates a set of guards (SG) within the workspace, according to

the robots’ limited visual range. These static guards are control points from which

the whole workspace can be jointly observed [44]. In other words, if there are as

many robots as there are guards, and each robot were stationed on a guard, the

entire area would be visible to the robots.

Definition 3.1. Guards, SG = {g1,g2, . . . ,gm}: A set of points located within the

workspace, such that if a robot is positioned on each guard, the entire workspace

would be visible to the robots.

To locate the guards, the algorithm decomposes the initial target area, a possi-

bly non-convex polygon with obstacles inside, into a collection of convex polygons

using a Trapezoidal Decomposition method, and then applies a post-processing

approach to eliminate as many trapezoids as possible [136]. In the next step, a

divide-and-conquer method [78] is used to subdivide successively each of the re-

sulting convex polygons (trapezoids) into smaller convex sub-polygons until each

of them can be covered visually by one guard. Figures 3.4b, 3.5, and 3.6 show the

trapezoidation of a sample workspace and the computed guards, assuming varying

visual ranges.

3.2.1 Trapezoidal Decomposition of the Workspace

Decomposing complex geometric environments into simpler components is crucial

in many applications. For decomposing the initial workspace, W, containing ob-

stacles to a set of convex polygons, a Trapezoidal Decomposition method is used.

A trapezoid is a convex quadrilateral in which two of the edges are parallel.

Trapezoidation was first addressed by Chazelle and Incerpi [28] and Fournier

and Montuno [58]. A randomized algorithm for trapezoidation was later proposed

by Seidel [121] as a basis for triangulation of the environments. None of the

work mentioned considered general polygonal environments containing obstacles.

For our purpose, we use the method suggested by Zalik and Clapworthy [136] to

achieve the trazpezoidal decomposition of a workspace with obstacles.
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Figure 3.1: Trapezoidation

A horizontal trapezoidation of a polygon involves drawing horizontal lines or

slices through every node of the polygon. Some triangles might also be gener-

ated by trapezoidation of a workspace, considering that a triangle is a degenerate

trapezoid, in which one of the parallel sides has zero length (Figure 3.1).

Post-Processing: Simplifying the Trapezoidation

The initial trapezoidation algorithm generates more trapezoids than necessary for

our application. This is because the algorithm does not look for simplifications to

merge the resulting trapezoids. The post-processing step aims at reducing the num-

ber of trapezoids generated by the algorithm. This can be achieved by removing

the slices lying inside the obstacles or outside the boundaries of the workspace or

those not crossing any nodes of the workspace.

Post-processing is more effective in cluttered areas, and since the number of

guards located by the algorithm is directly correlated to the number of trapezoids,

fewer trapezoids will result in fewer guards.

Figure 3.2b shows the post-processing performed after trapezoidation of the

sample polygonal workspace of Figure 3.2a.
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(a) Trapezoidation (b) Simplifying the Trapezoidation

Figure 3.2: Trapezoidation and the Post-Processing Step

3.2.2 Locating Guards within the Trapezoids

Having decomposed the area into a collection of convex polygons (i.e., trapezoids),

a potential guard (PG) is computed within each trapezoid. Then, the trapezoid

node with the maximum distance (TNMD) from the selected potential guard is

determined. The potential guard is considered a guard, if it can cover the entire

trapezoid, that is, if and only if the distance between TNMD and PG is smaller

than the robots’ visual range, otherwise the trapezoid is divided into smaller sub-

trapezoids.

Computing a Potential Guard

The following point is selected as a potential guard within a trapezoid:
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PG 

Div 

TNMD 

Figure 3.3: Computing the Potential Guard and the Trapezoid Division

PG(x,y) =

|E|

∑
i=1

‖Ei‖×Mi(x,y)

|E|

∑
i=1

‖Ei‖

, (3.3)

where Mi(x,y) is the coordinates of the midpoint of the i-th edge Ei of the trapezoid,

and ‖Ei‖ is the size of the edge Ei . This point is the weighted average of the

midpoints of the trapezoid’s edges. The idea behind this selection is to bias the

potential guard towards the longer edges of the trapezoid (Figure 3.3).

Trapezoid Division

The aim of this stage is to generate trapezoids that can be covered with only one

guard. If a potential guard can not cover the entire trapezoid, the trapezoid is

successively divided into smaller pieces, until each can be covered by one guard.

At each division step, the goal is to reduce the distance between PG and TNMD

as much as possible. To this end, the line Div, that is perpendicular to the line

segment connecting PG and TNMD and passes through PG is computed (Figure

3.3). Div divides the trapezoid into two sub-trapezoids, and the same procedure is

recursively performed on each of the derived sub-trapezoids.
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(a) Original Map (b) Trapezoidation

Figure 3.4: Trapezoidation of a Sample Workspace

Figure 3.4b shows the trapezoidation of the sample workspace of Figure 3.4a.

The size of the workspace is 10m×10m. Figure 3.5 and Figure 3.6 also show the

computed guards on the workspace, assuming varied visual ranges of 0.25m, 0.5m,

0.75m, 1m, and 1.5m.

3.3 Building the Graph
In this section, we investigate a graph structure for environment representation

based on the Constrained Delaunay Triangulation (CDT). Having located the static

guards in the previous step, the Constrained Delaunay Triangulation is then built

on the computed guards and the nodes of the workspace.

3.3.1 Delaunay Triangulation

The Delaunay Triangulation (DT) of a set of nodes, N, in the Euclidean plane is

a triangulation, DT (N), such that the circumcircle of any triangle in the triangula-

tion DT (N) does not contain any nodes other than the three that define it (Delaunay

Condition) [85]. For instance, in Figure 3.7, the triangles A and B satisfy the De-

launay Condition, but in Figure 3.8, the triangles do not satisfy the condition. The

Delaunay Triangulation corresponds to the dual graph of the Voronoi Tessellation

[98].
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(a) Visual Range = 0.25m (b) Visual Range = 0.5m

(c) Visual Range = 0.75m (d) Visual Range = 1m

(e) Visual Range = 1.5m

Figure 3.5: Trapezoidation + Computed Guards
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(a) Visual Range = 0.25m (b) Visual Range = 0.5m

(c) Visual Range = 0.75m (d) Visual Range = 1m

(e) Visual Range = 1.5m

Figure 3.6: Computed Guards
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A B A B 

Figure 3.7: Triangles A and B Satisfy the Delaunay Condition

A B A B 

Figure 3.8: Triangles A and B Do Not Satisfy the Delaunay Condition

3.3.2 Constrained Delaunay Triangulation

The Constrained Delaunay Triangulation (CDT) is a variant of the standard Delau-

nay Triangulation in which a set of pre-specified edges (in our case, the edges of

the workspace) must lie in the triangulation [29]. Often, a Constrained Delaunay

Triangulation contains triangles that do not satisfy the Delaunay Condition, i.e.,

the circumcircle associated with each triangle may contain nodes in its interior,

other than the three nodes of the triangle.

Figure 3.9 illustrates the Constrained Delaunay Triangulation built on the sam-

ple workspace and the computed guards based on varying visual range of the

robots.

3.4 Cyclic Coverage
Cyclic Coverage (Algorithm 1) computes the shortest tour passing through all the

computed guards in the workspace using the Chained Lin-Kernighan algorithm
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(a) Visual Range = 0.25m (b) Visual Range = 0.5m

(c) Visual Range = 0.75m (d) Visual Range = 1m

(e) Visual Range = 1.5m

Figure 3.9: Constrained Delaunay Triangulation
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(a) Visual Range = 0.25m (b) Visual Range = 0.5m

(c) Visual Range = 0.75m (d) Visual Range = 1m

(e) Visual Range = 1.5m

Figure 3.10: Tours Built on the Sample Workspace
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Algorithm 3.1: Cyclic Coverage
Input:
Gcdt(Vcdt ,Ecdt), where Vcdt = SG

⋃
P /* CDT */

SG = {g1,g2, . . . ,gm} /* Static Guards */
P = {p1, p2, . . . , pn} /* Workspace Nodes */
|R| /* Number of Robots */
V=

{
v1,v2, . . . ,v|R|

}
/* Speed of the Robots */

Output:
A tour, dTour, passing through all the guards of the CDT graph, and
distributed among the robots.

1 begin
2 tour←− BuildTour(Gcdt)
3 dTour←− DistributeRobots(tour, |R|,V)
4 return dTour
5 end

(Section 3.4.1) (line 2). The input of the Chained Lin-Kernighan algorithm is the

distance matrix of the guards in the CDT graph. The matrix represents the shortest

path distances between all pairs of guards of the CDT graph, and these paths can in-

clude any nodes of the workspace as well. The input to the Chained Lin-Kernighan

algorithm should be a complete graph and the distance matrix is indicative of a

complete graph, even though the CDT graph may not be complete.

Figure 3.10 illustrates the tours built on the sample workspace under varying

visual ranges.

If there are |R| robots of various maximal speeds of v1,v2, . . . ,v|R|, the tour

built on the workspace is then divided in proportion to the speeds of the robots

(line 3). Without loss of generality, we assume that the robots are numbered such

that:

0≤ v1 ≤ v2 ≤ ·· · ≤ v|R|. (3.4)

Then, we can partition a tour of size ‖dTour‖ into |R| segments, such that the

length of the i-th segment dTouri equals:
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‖dTouri‖=
vi

v1 + v2 + · · ·+ v|R|
×‖dTour‖ . (3.5)

Cyclic Coverage balances the workload distribution among the robots based on

their maximal speeds. According to equation 3.5, if the robots have equal speeds,

they position themselves equidistantly around the tour and traverse the sub-path

assigned to them.

Since the map of the workspace, the size of the robot team, and their maximal

speeds are known to the robots, each robot can compute the shortest tour in the

workspace and the segment assigned to it on the tour in a decentralized manner,

and no communication is needed among the robots.

3.4.1 Chained Lin-Kernighan

Chained Lin-Kernighan (CLK), a modification of the Lin-Kernighan algorithm

[86], is generally considered to be one of the best heuristic methods for generating

optimal or near-optimal solutions for the Euclidean Traveling Salesman Problem

[11]. Given the distance between each pair of a finite number of nodes in a complete

graph, the Traveling Salesman Problem (TSP) is to find the shortest tour passing

through all the nodes exactly once and returning to the starting node [12].

Lin-Kernighan is a local search algorithm [71] and a generalization of the k-opt

algorithm [27]. A k-opt algorithm explores all the TSP tours which can be obtained

by removing k edges from the original tour and adding k different edges such that

the resulting tour is feasible. In order to improve efficiency, Lin and Kernighan in-

troduce a variable k-opt algorithm, which adaptively decides at each iteration what

value of k to use [86]. Given the computation time limit, the process is repeated by

generating new initial tours and applying the Lin-Kernighan algorithm to possibly

find a tour shorter than the best one thus far. Martin et al. [92, 93] suggest that

instead of repeatedly starting from new tours, which is inefficient, the alternative

is to perturb the Lin-Kernighan tour, and then reapply the algorithm. If this leads

to a shorter tour, then discard the old tour, and start with the new one. Otherwise,

continue with the old tour and perturb it again. The implementation of the Chained

Lin-Kernighan method which we use in our study is based on the Concorde TSP

library [11].
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(a) WS = 10m×10m, VR = 0.75m (b) WS = 10m×12m, VR = 1m

(c) WS = 10m×12m, VR = 0.5m (d) WS = 10m×10m, VR = 0.5m

(e) WS = 10m×10m, VR = 0.75m (f) WS = 10m×12m, VR = 1.5m

Figure 3.11: Computed Tours, WS: Workspace Size, VR: Visual Range
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3.4.2 Example Solutions

Figure 3.11 shows the shortest tours computed on different environments assuming

different visual ranges of the robots. As shown in the examples, the amount of re-

dundant movement to cover the workspace is minimized, except within the narrow

corridors and closed spaces where the robots have no other option but cover the

area twice by moving back and forth inside the space.

3.4.3 Completeness

The proposed approach covers every accessible point in the workspace in a finite

time. As mentioned earlier, the computed static guards are points from which the

whole target area can be jointly observed, considering the limited visual range con-

straint of the robots. Hence, traversing the shortest tour created on the workspace

by the robots leads to visiting all the static guards and therefore the full coverage

of the workspace.

3.4.4 Robustness

Robot failure during execution can jeopardize the completion of the area coverage

task. By failure, we mean that the robot is not capable of moving anymore, and

by fault tolerance, we refer to the ability of the team to respond to individual robot

failure that may occur at any time during the coverage mission.

Our approach guarantees robustness through a simple mechanism. Since the

robots are moving on a cycle, each robot has |R| − 1 robots behind it, so when a

robot fails, the first operating robot behind it can take over covering the segment

associated with the failed robot. There is no need to reconfigure and reposition the

robots around the cycle after a robot fails. The algorithm guarantees covering the

entire workspace in a finite time even if |R|−1 robots fail. This assumes the failed

robots do not block the path of the other robots, and it is capable of communicating

its failure with the other robots.
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Stages of the Algorithm Time Complexity

Locating Guards O(n2 log2 n)

Building Graph Constrained Delaunay Triangulation O((n+m) log(n+m))

Cyclic Coverage Chained Lin-Kernighan O(m2.2)a

Table 3.1: Time Complexity of Different Stages of the Single Coverage Algorithm.
n: Number of Workspace Nodes, m: Number of Guards

3.5 Complexity Analyses of the Algorithm
The basic version of the coverage problem with just one robot with unlimited visual

range operating in a simple polygon without obstacles has an exact polynomial

time solution [24, 126]. But, extending the problem to include obstacles in the

workspace, to multiple robots, or to limited visual range, makes the corresponding

decision problems NP-hard [97]. Furthermore, it is not even possible to develop

polynomial approximation algorithms, when minimizing the Coverage Time [100].

The time complexity of the stages of the proposed single coverage algorithm is

shown in Table 3.1.

3.6 Evaluation and Experimental Simulations
We have developed a simulator to test the algorithm in different scenarios. The

simulator can support different numbers of robots in the target area, different visual

ranges for the robots, and varying degrees of clutter in the environment. A random

map generator was also developed as a part of the simulator which extends a library

[127] to build polygonal environments with free form polygonal obstacles within

the space.

We consider three types of environments in the experiments: sparse (0−25%

cluttered), semi-cluttered (25−50% cluttered), cluttered (50−75% cluttered). Ten

different maps are used in the experiments for each of the three environment types

(30 in total). The clutter percentage of an environment is the ratio of the area

of the obstacles to the whole target area: Obstacles
Obstacles+Free Space . Figure 3.12 rep-

aThis entry is based on experimental results [11, 86]. The worst case time complexity of the
Chained Lin-Kernighan algorithm is apparently not available in the literature [69].
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Figure 3.12: Percentage of Clutter in Each Map
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Figure 3.13: Average Number of Guards Computed on the Selected Maps as a
Function of the Robots’ Visual Range
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Figure 3.14: The Log-Log Plot of Figure 3.13 with a Linear Fit

resents the percentage of clutter in each of the maps used in the experiments

(sorted from the least cluttered to the most cluttered). The size of the environ-

ments is 15m×15m. The maps can be accessed at: http://www.cs.ubc.ca/∼pooyanf/

Research/CoverageMaps.zip.

Figure 3.13 shows the average number of guards computed on the 30 maps

used in the experiments under visual ranges up to 4m. As shown in the figure,

the number of computed guards decreases with the increase in the visual range

of the robots, and beyond a visual range of 1.5m, the number of guards becomes

essentially fixed. Figure 3.14 shows the corresponding log-log plot and the best

linear fit (y = 209.47× x−1.784) for visual ranges up to 1.5m.

Based on this distribution and some initial experiments to find the proper in-

terval between the visual ranges, so that the difference of the results between two

subsequent visual ranges is shown more clearly, we chose visual ranges 0.25m,

0.5m, 0.75m, 1m and 1.5m to evaluate the coverage algorithm.

Figure 3.15 shows the number of guards computed on each of the selected maps

under the chosen visual ranges for the robots. As shown in the figure, for each of
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Figure 3.15: Number of Guards Computed on Each Selected Map as a Function
of the Chosen Visual Ranges

the visual ranges, there is a negative correlation between the number of computed

guards and the percentage of clutter in the sample workspaces, that is, as the clutter

of the environment increases, the number of guards declines in general:

Number o f Guards ∝∼−Percentage o f Clutter. (3.6)

In other words, there is a positive correlation between the free space of the

workspace and the number of computed guards:

Number o f Guards ∝∼ Free Space. (3.7)

3.6.1 Coverage Time

Figure 3.16 shows the Coverage Time of the environments by a team of 4 robots un-

der visual ranges of 0.25m, 0.5m, 0.75m, 1m and 1.5m. The robots are assumed to

have a unit speed of 1m/sec. The figure shows that as the robots’ visual range and
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Figure 3.16: Visual Range vs. Coverage Time
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Figure 3.17: Coverage Time ∝∼ Number of Guards × Visual Range
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the percentage of clutter in the environments increase, the Coverage Time declines.

Moreover, Figure 3.17 shows that the Coverage Time is a function of the num-

ber of guards and the robots’ visual range, and there is a positive correlation

(R2 = 0.9) between the Coverage Time and the number of guards times the robots’

visual range:

Coverage Time ∝∼ Number o f Guards×Visual Range, (3.8)

and considering Equation 3.7, we can conclude that the obtained results on the

Coverage Time of the sample environments are scalable to workspaces of different

sizes (i.e., different amounts of free space), and robots’ of varying visual ranges.

3.7 Conclusions
We addressed the problem of multi-robot single coverage of polygonal workspaces

containing polygonal obstacles. The robots have a 360 ◦ field of view and a pre-

defined circular limit of visual range. The proposed Cyclic Coverage algorithm is

complete, meaning that any accessible point of the workspace is visited in a finite

time by at least one of the paths assigned to the robots.

Cyclic Coverage improves upon the coverage algorithms based on Approxi-

mate Cellular Decomposition, which ignore partially occluded cells or areas close

to the boundaries. It is also an improvement on the algorithms based on Exact

Cellular Decomposition, which do not have a clear policy for moving within the

cells, and may have many redundant motions while moving between the cells in

the workspace.

The proposed algorithm supports heterogeneous robots having various max-

imal speeds, and supports robustness by handling individual robot failure. It

also balances the workload distribution among the robots based on their maximal

speeds. Finally, it is shown that the obtained results on the Coverage Time of the

sample environments are scalable to workspaces of different sizes (i.e., different

amounts of free space), and robots of varied visual ranges.
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Chapter 4

On Multi-Robot Repeated Area
Coverage

4.1 Problem Definition and Preliminaries
In this chapter, we address the Multi-Robot Repeated Area Coverage problem with

the following specifications:

Assumption 4.1. The workspace, W⊂ R2, is a given polygon containing polygo-

nal obstacles.

Assumption 4.2. The robots, R, are assumed to have a 360 ◦ field of view and a

predefined circular limit of visual range.

Assumption 4.3. The |R| robots of the team are homogeneous, having the same

maximal speed.

The goal is is to visit all the accessible points of the target area repeatedly over

time, using a given number of robots. In order to evaluate the performance, some

metric criteria need to be determined, but before that we introduce some basic

definitions:

• Full Single Coverage: all the robots traverse the paths assigned to them just

once.
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A 

Figure 4.1: Visiting Period and Visiting Frequency

• Visiting Period (VP): the time interval between two visits to a point of in-

terest in the target area. A point of interest can have more than one Visiting

Period, due to the possibility that the point may be visited more than once in

different time intervals by one or more than one robot in a Full Single Cover-

age. For example, in Figure 4.1, point A (shown by the red dot) has 3 Visiting

Periods, 2 are determined by the black robot/tour and 1 is determined by the

blue robot/tour.

• Average Visiting Period (AVP): the average of the Visiting Periods of a point

of interest.

• Worst Visiting Period (WVP): the maximum period of time it takes a point

of interest to be re-visited in the target area.

• Visiting Frequency (VF): the number of visits to a point of interest by a

single robot in a Full Single Coverage. If a point of interest is visited by

more than one robot in a Full Single Coverage, the point will have more than

one Visiting Frequency, each associated with a different robot. For example,

in Figure 4.1, point A has 2 Visiting Frequencies, one is determined by the

black robot/tour and the other is determined by the blue robot/tour. The

Visiting Frequency of point A on the black tour is 2 and on the blue tour is 1.

The repeated coverage algorithms will be evaluated based on the following

metrics:

• Total Path Length (TPL): the sum of the lengths of the paths assigned to the

robots in order to have a Full Single Coverage.
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• Total Average Visiting Period (TAVP): the average of the Average Visiting

Periods of all the points of interest in the target area.

• Total Worst Visiting Period (TWVP): the maximum Worst Visiting Period of

all the points of interests in the target area.

• Balance in Workload Distribution (BWD): the degree of balance in the

workload distribution among a team of robots ∈ [0,100].

In this study, the aim is to minimize TPL, TAVP, and TWVP and to maximize

BWD in the repeated coverage scenario. Interestingly, it is not possible even to

develop polynomial approximation algorithms, when optimizing any one of the

metrics mentioned above, unless P = NP [100]. Furthermore, optimizing all

these metrics simultaneously is another challenge, because some are mutually

conflicting in the coverage problem. These considerations require us to conduct an

extensive experimental analysis to evaluate the performance of the algorithms.

Overview: In this chapter:

1. Three Cluster-based algorithms are introduced for the distributed repeated

coverage problem, differing as to how they partition the workspace among

the robots, namely, the Uninformed Clustering Coverage, the Edge-based

Clustering Coverage, and the Node-based Clustering Coverage algorithms.

2. The repeated version of Cyclic Coverage is used as a benchmark to compare

the performance of the repeated coverage algorithms.

3. The effects of environment representation, and the robots visual range on the

performance of the repeated coverage algorithms are investigated.

The results can be used as a framework for choosing an appropriate combina-

tion of repeated coverage algorithm, environment representation, and the robots’

visual range based on the particular workspace and the metric to be optimized.
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(a) Non-overlapped Paths

(b) Overlapped Paths

Figure 4.2: Non-overlapped vs. Overlapped Paths for Two Robots

4.1.1 Computing the Evaluation Metrics

The paths of the robots in the target area may not overlap, that is, there is no

common Point of Interest among the robots’ paths (as shown in Figure 4.2a), or

may overlap, that is, there are some common Points of Interest among the robots’

paths (e.g. red dots shown in Figure 4.2b). Considering this, the evaluation metrics

are defined as below:

Total Path Length (TPL)

T PL =
|R|

∑
i=1
‖Path(ri)‖. (4.1)

|R| is the number of robots, Path(ri) is the path built for robot ri, and ‖Path(ri)‖ is

the length of the path.

Total Average Visiting Period (TAVP)

TAV P =

∑node∈PoI AV P(node)
|PoI|

,PoI = Points o f Interest,
(4.2)

where

AV P(node) = ‖Path(ri)‖
V Fi(node) , i∈ {1,2, ..., |R|}, node∈ Path(ri), if node is not a common
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Point of Interest among the robots’ paths, or

AV P(node) = 1
∑i

V Fi(node)
‖Path(ri)‖

, i ∈ {1,2, ..., |R|}, node ∈ Path(ri), if node is a common

Point of Interest among the robots’ overlapped paths.

V Fi(node) is the node Visiting Frequency in Path(ri).

Total Worst Visiting Period (TWVP)

TWV P = maxnode∈PoI(WV P(node)), (4.3)

where

WV P(node) = max{V Pi(node)} , node ∈ Path(ri), if node is not a common Point

of Interest among the robots’ paths, or

WV P(node) = mini=1,2,...,|R|{max{V Pi(node)}}, node ∈ Path(ri), if node is a

common Point of Interest among the robots’ overlapped paths.
{V Pi(node)} is the set of all the Visiting Periods of the node in Path(ri).

In computing the WVP of a Point of Interest which is common among the

robots’ paths, we first calculate the maximum Visiting Period of the point in each

robot’s path, and then choose the minimum of the maximum values. Recall that

each Point of Interest can belong to the path of more than one robot, and can also

have more than one Visiting Period in each robot’s path.

Balance in Workload Distribution (BWD)

BWD(Paths) =

(1− ST D({‖Path(ri)‖|i = 1,2, ..., |R|})
ST D(

{
T PL,α1,α2, . . . ,α|R|−1|αi = 0

}
)
)×100,

(4.4)

where ST D(.) is the population standard deviation, and Paths ={
Path(r1),Path(r2), . . . ,Path(r|R|)

}
is the |R| paths created for the |R| robots. For

the case of one robot, we assume that BWD(Paths) = 100. In BWD’s computation,

ST D({‖Path(ri)‖|i = 1,2, ..., |R|}) is the population standard deviation of the

set of paths created for the robots, and ST D(
{

T PL,α1,α2, . . . ,α|R|−1|αi = 0
}
)

is the worst case scenario, in which one robot is in charge of the whole task, i.e.

T PL, and the other robots are idle with zero path length (α1,α2, . . . ,α|R|−1). A
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workload distribution is 100% balanced if the standard deviation of the lengths of

the constructed paths for the robots is zero, i.e., the paths assigned to the robots all

have equal lengths.

4.1.2 Stages of the Repeated Coverage Algorithms

The stages of the proposed repeated coverage algorithms are as follows:

1. A set of static guards (SG), Points of Interest, required to observe a given

workspace, is located, considering the limited visual range constraint of the

robots (Section 4.2).

2. A graph is built on the guards and the nodes of the workspace based on either

the Visibility Graph (VG) or the Constrained Delaunay Triangulation (CDT)

(Section 4.3).

3. The graph is reduced to either the Reduced-Vis or the Reduced-CDT repre-

sentation (Section 4.4).

4. Coverage Algorithms:

(a) Cluster-based Coverage Algorithms: The Reduced Graph is parti-

tioned into as many clusters as the number of robots. To this end, three

different clustering algorithms are introduced, namely: Uninformed

Clustering, Edge-based Clustering, and Node-based Clustering. Fi-

nally, a tour is built for each robot on the clustered Reduced Graph.

For this purpose, two tour building algorithms are proposed, namely:

Double-Minimum Spanning Tree, and the Chained Lin-Kernighan al-

gorithms (Section 4.5).

(b) Cyclic Coverage Algorithm: Cyclic Coverage finds the shortest tour on

the whole VG or CDT graph, passing through all the static guards, and

then distributes the robots equidistantly around it (Section 4.6).

In the following sections, we will explain the different stages of the proposed

algorithms for repeated coverage of a target area in detail.
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Figure 4.3: Original Map

4.2 Locating Guards with Limited Visual Range
In our problem definition, we assume the robots are equipped with panoramic cam-

eras with a 360 ◦ field of view. However, the cameras’ visual range is limited. The

proposed approach initially locates a set of guards (Points of Interests) within the

workspace, according to the robots’ limited visual range. As mentioned in Chapter

3, these static guards are control points from which the whole workspace can be

jointly observed. In other words, if there are as many robots as there are guards,

and each robot were stationed on a guard, the entire area would be visible to the

robots.

We use the same method presented in Section 3.2 of Chapter 3 to locate the

guards in the workspace.

4.3 Building the Graphs
Having located the static guards in the previous step, the Visibility Graph and the

Constrained Delaunay Triangulation are then built on the guards and the nodes of

the workspacea.

aFor brevity, and given the similarity of the results between the Visibility Graph and the Con-
strained Delaunay Triangulation under different optimization metrics which will be discussed in the
Evaluation and Experimental Simulations section (Section 4.8), we just show the graphical results of
the coverage algorithms on the sample workspaces modeled by the Visibility Graph.
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4.3.1 Visibility Graph

The Visibility Graph (VG) is a graph structure used in computational geometry and

robot motion planning [82]. The Visibility Graph (VG) of a set of nodes, N, in the

Euclidean plane is a graph, V G(N), in which if two nodes are mutually visible,

they are connected by an edge. Two nodes are mutually visible if the line segment

joining them does not intersect any obstacle [36]. Figures 4.4a, 4.4c, and 4.4e

illustrate the Visibility Graphs built on the sample workspace of Figure 4.3 under

visual ranges of 0.5m, 1m, and 1.5m.

4.3.2 Constrained Delaunay Triangulation

The Delaunay Triangulation (DT) of a set of nodes, N, in the Euclidean plane is a

triangulation, DT (N), such that the circumcircle of any triangle in the triangulation

DT (N) does not contain any nodes other than the three that define it (Delaunay

Condition) [85].

The Constrained Delaunay Triangulation (CDT) is a variant of the standard

Delaunay Triangulation in which a set of pre-specified edges (in our case, the

edges of the workspace) must lie in the triangulation [29].

4.4 Graph Reduction
The aim of the graph reduction method is to improve efficiency by minimizing the

time taken for the robots to traverse the graph. Algorithm 4.1 describes the steps

of the construction of a Reduced Graph (Reduced-Vis or Reduced-CDT) on a given

environment. The input to the algorithm is the VG or the CDT discussed in Section

4.3.

The method starts by using the Floyd-Warshall algorithm to find the

set MD =
{

md(gi,g j)|gi,g j ∈ SG
}

of minimum distances, and the set SP ={
sp(gi,g j)|gi,g j ∈ SG

}
of shortest paths between any pair of guards gi and g j of

the input graph (line 2).

The guards associated with the minimum value of all the minimum distances in

MD, namely the closest pair of guards in the workspace, are then selected (line 3),

and the corresponding shortest path in SP, including all its nodes and edges, forms

the initial component of the Reduced Graph (line 4).
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(a) Visibility Graph, VR=0.5m (b) Reduced-Vis, VR=0.5m

(c) Visibility Graph, VR=1m (d) Reduced-Vis, VR=1m

(e) Visibility Graph, VR=1.5m (f) Reduced-Vis, VR=1.5m

Figure 4.4: VG and Reduced-Vis
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Algorithm 4.1: Graph Reduction
Input:
Graph Gvis−cdt(Vvis−cdt ,Evis−cdt), where Vvis−cdt = SG

⋃
P /*VG or CDT*/

SG = {g1,g2, ....,gm} /* Static Guards */
P = {p1, p2, ...., pn} /* Workspace Nodes */

Output:
Gr−vis−cdt(Vr−vis−cdt ,Er−vis−cdt) where Vr−vis−cdt = SG

⋃
P̃, P̃⊂ P

/* Reduced Graph */

1 begin
2 (MD,SP)←− FloydWarshall(Gvis−cdt)
3 (gi,g j)←− argmin

(gi,g j)

MD

4 Gr−vis−cdt ←− InitialReducedGraph(sp(gi,g j))
5 while ¬ all the guards added do
6 g←− FindClosestGuardTo(Gr−vis−cdt)
7 Expand(Gr−vis−cdt ,g)
8 end
9 return Gr−vis−cdt

10 end

Next, among all the guards that have not yet been added to the graph, the

algorithm finds the closest guard to the current component (line 6), merging the

corresponding shortest path with it (line 7). Following the same process, the algo-

rithm keeps expanding the component until there are no more guards to be added

to the graph (lines 5-8). The resultant graph is the final Reduced Graph (line 9).

The nodes of the graph includes all the guards, as the Points of Interest in the target

area and the subset of the workspace nodes (P̃⊂P). Traversing the Reduced Graph

guarantees complete coverage of the target area given the limited visual range of

the robots.

Figures 4.4b, 4.4d, and 4.4f illustrate the Reduced-Vis graphs computed on the

Visibility Graphs of Figures 4.4a, 4.4c, and 4.4e.
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Algorithm 4.2: Uninformed Clustering Coverage
Input:
Gvis−cdt(Vvis−cdt ,Evis−cdt), where Vvis−cdt = SG

⋃
P /* VG or CDT */

SG = {g1,g2, ....,gm} /* Static Guards */
P = {p1, p2, ...., pn} /* Workspace Nodes */
Gr−vis−cdt : the Reduced-Vis or the Reduced-CDT Graph
|R|: Number of Robots

Output:

A set of |R| tours, Tours =
{

T1,T2, . . . ,T|R|
}

where
|R|⋃
i=1

SGTi = SG, SG is the

set of all guards and SGTi is the set of guards of the tour Ti

1 begin
2 /*Remove |R|−1 longest edges of Gr−vis−cdt*/

Clusters←− RemoveLongestEdges(Gr−vis−cdt , |R|−1)
3 foreach Ci ∈Clusters do
4 Ti←− BuildTour(Ci)
5 end
6 return Tours
7 end

4.5 Cluster-based Coverage Algorithms
Cluster-based coverage algorithms decompose the Reduced Graph into |R| (num-

ber of robots) clusters, Clusters =
{

C1,C2, . . . ,C|R|
}

, such that
|R|⋃
i=1

SGCi = SG; SG

is the set of all guards and SGCi is the set of guards of the cluster Ci. Below, three

different cluster-based coverage algorithms are presented. The input of the pro-

posed algorithms can be either of the Reduced Graphs. Having built the clusters

on the Reduced Graphs, a tour is built on the generated cluster for each robot,

Tours =
{

T1,T2, . . . ,T|R|
}

. The tour building algorithms are discussed in Section

4.5.4.

4.5.1 Uninformed Clustering Coverage

Uninformed Clustering Coverage (Algorithm 4.2) partitions the Reduced Graph

into |R| clusters by removing the |R|−1 longest edges of the graph (line 2). There-
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(a) Double-MST, VR=0.5m (b) CLK, VR=0.5m

(c) Double-MST, VR=1m (d) CLK, VR=1m

(e) Double-MST, VR=1.5m (f) CLK, VR=1.5m

Figure 4.5: Tours Built for Five Robots by Uninformed Clustering Coverage
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after, a tour is built on each cluster generated for the robots (lines 3-5). There is

no overlap (existence of common guards) among the tours built by Uninformed

Clustering Coverage.

Figure 4.5 illustrates the tours built for five robots on the sample workspace by

the Uninformed Clustering Coverage algorithm, under visual ranges of 0.5m, 1m,

and 1.5.

4.5.2 Edge-based Clustering Coverage

In Edge-based Clustering Coverage (Algorithm 4.3), the clusters are initiated as

follows: the endpoint guards of the longest path in the original graph (VG or CDT)

are selected as the starting points of the first two clusters. For the next cluster, a

guard is selected such that it maximizes the sum of the distances from the starting

points of the first two clusters. Similarly, for the next cluster, a guard is selected

that maximizes the sum of the distances from the starting points of the first three

clusters. This continues until |R| initial guards are found for the |R| clusters of the

robots (line 2).

The reason to initiate the clusters in the original VG or CDT graph is to dis-

tribute the clusters spatially as much as possible far away from each other in the

target area. Distance between the guards in the original VG or CDT graph, in con-

trast to the Euclidean distance, takes into account the obstacles in the area, and

is more accurate than the distance in the Reduced Graph, because there are many

edges between the nodes in the original graph which were removed in the Reduced

Graph.

Starting from the initial guards, clusters are expanded in the Reduced Graph

sequentially by choosing one guard at a time, until all the guards of the Reduced

Graph have been selected at least once (lines 3-11). Each cluster selects guards in

a way that satisfies the following constraints:

• Find the nearest unselected guard in the Reduced Graph, add it and the cor-

responding edge/path to the cluster (line 5).

• Do not add a guard which has already been chosen by another cluster, unless

there is no other unselected immediate guard (lines 6-8).
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Algorithm 4.3: Edge-based Clustering Coverage
Input:
Gvis−cdt(Vvis−cdt ,Evis−cdt), where Vvis−cdt = SG

⋃
P /* VG or CDT */

SG = {g1,g2, ....,gm} /* Static Guards */
P = {p1, p2, ...., pn} /* Workspace Nodes */
Gr−vis−cdt : the Reduced-Vis or the Reduced-CDT Graph
|R|: Number of Robots

Output:

A set of |R| tours, Tours =
{

T1,T2, . . . ,T|R|
}

where
|R|⋃
i=1

SGTi = SG, SG is the

set of all guards and SGTi is the set of guards of the tour Ti

1 begin
2 Clusters←− InitiateClusters(Gvis−cdt)
3 while ¬ all the guards of the graph Gr−vis−cdt visited do
4 foreach Ci ∈Clusters do
5 find g ∈ SG which is the nearest immediate guard to Ci in

Gr−vis−cdt and ¬ visited
6 if there is no such a guard g then
7 find g ∈ SG which is the nearest immediate guard to Ci in

Gr−vis−cdt
8 end
9 Ci.add(g)

10 end
11 end
12 foreach Ci ∈Clusters do
13 if there are common guards between Ci and another cluster then
14 if the guards have been selected earlier by the other cluster then
15 if ¬ removing the common guards from Ci disconnects either

cluster then
16 RemoveCommonGuardsFrom(Ci)
17 end
18 end
19 end
20 Ti←− BuildTour(Ci)

21 end
22 return Tours
23 end
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(a) Double-MST, VR=0.5m (b) CLK, VR=0.5m

(c) Double-MST, VR=1m (d) CLK, VR=1m

(e) Double-MST, VR=1.5m (f) CLK, VR=1.5m

Figure 4.6: Tours Built for Five Robots by Edge-based Clustering Coverage
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Remove Common Guards: When all the guards of the graph have been selected

by at least one cluster, remove as many as possible of the guards shared by the

clusters of the robots. To this end, for each cluster, discard the guards and their

corresponding edges/paths from the cluster if they have been selected earlier by any

other cluster (lines 13-19). There are cases where the overlap among the clusters

cannot be resolved. If removing the overlap among the clusters disconnects any of

them, then the overlap is left in all the clusters.

Finally, a tour is built on the generated cluster for each robot (line 20).

Figure 4.6 illustrates the tours built for five robots on the sample workspace by

the Edge-based Clustering Coverage algorithm, under visual ranges of 0.5m, 1m,

and 1.5m.

4.5.3 Node-based Clustering Coverage

Node-based Clustering Coverage (Algorithm 4.4) initially uses the k-Means clus-

tering algorithm [67] to divide the guards into |R| disjoint clusters, Clusters ={
C1,C2, . . . ,C|R|

}
, in which each guard belongs to the cluster with the near-

est mean/centroid (line 2). In other words, given the set of guards SG =

{g1,g2, ....,gm}, k-Means minimizes the within-cluster sum of squares:

Clusters = argmin
Clusters

|R|

∑
i=1

∑
g j∈Ci

∥∥g j−µi
∥∥2

, (4.5)

where Clusters =
{

C1,C2, . . . ,C|R|
}

is the final clusters of the guards, µi is the

mean of the guards in cluster Ci, matched to the closest guard in the workspace.∥∥g j−µi
∥∥2 is the distance between a guard and the mean of the cluster in the orig-

inal VG or CDT graph.

In the first iteration of k-Means, the initial means are found in the same way

as finding the starting points of the clusters discussed in Edge-based Clustering

Coverage. This aims to distribute the clusters spatially as much as possible far

away from each other in the target area. Given this initial set of |R| means, the

algorithm proceeds by alternating between two steps: 1) Assignment Step: Assign

each guard to the cluster with the closest mean, 2) Update Step: Calculate the new

means to be the centroid of the guards in the cluster. These two steps are alternated
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Algorithm 4.4: Node-based Clustering Coverage
Input:
Gvis−cdt(Vvis−cdt ,Evis−cdt), where Vvis−cdt = SG

⋃
P /* VG or CDT */

SG = {g1,g2, ....,gm} /* Static Guards */
P = {p1, p2, ...., pn} /* Workspace Nodes */
Gr−vis−cdt : the Reduced-Vis or the Reduced-CDT Graph
|R|: Number of Robots

Output:

A set of |R| tours, Tours =
{

T1,T2, . . . ,T|R|
}

where
|R|⋃
i=1

SGTi = SG, SG is the

set of all guards and SGTi is the set of guards of the tour Ti

1 begin
2 InitialCentroids←− FindInitialCentroids(Gvis−cdt , |R|)
3 Tours←− kMeans(Gvis−cdt , |R| , InitialCentroids)
4 foreach Ci ∈Clusters do
5 Ci←−ConnectGuards(Ci,Gr−vis−cdt)
6 DCComponents←− FindDCComponents(Ci)
7 Ci←− BuildMST (Gvis−cdt ,DCComponents)
8 Ti←− BuildTour(Ci)

9 end
10 return Tours
11 end

until there is no further change in the assignment of the guards. Since the computed

means may not lie on the guards of the graph, they are matched to the closest guard

in the workspace.

Having built the |R| clusters on the guards (line 3), we connect each pair of

guards in each cluster if they have a corresponding path (including the intermedi-

ate nodes of the workspace) in the Reduced Graph (line 5). Thereafter, we do a

connectivity test on all the clusters, meaning that every pair of guards in each clus-

ter should be connected through a path. To this end, we first find the disconnected

components within the cluster (line 6) and then compute the Minimum Spanning

Tree on them by getting help from the edges of the original VG or CDT graph, and

the nodes of the workspace (line 7). The Minimum Spanning Tree will not add any
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(a) Double-MST, VR=0.5m (b) CLK, VR=0.5m

(c) Double-MST, VR=1m (d) CLK, VR=1m

(e) Double-MST, VR=1.5m (f) CLK, VR=1.5m

Figure 4.7: Tours Built for Five Robots by Node-based Clustering Coverage
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other new guard to the set of guards existing in the cluster. This prevents the over-

lap among the clusters; however, the tree can add any nodes of the workspace to

the cluster. We add the Minimum Spanning Tree’s corresponding edges and nodes

to the cluster (line 7), and finally a tour is built on the cluster (line 8). The tour

is then assigned to a robot, and the robot repeatedly traverses the tour. In Node-

based Clustering Coverage, there is no overlap among the tours generated by the

algorithm,

Figure 4.7 illustrates the tours built for five robots on the sample workspace by

the Node-based Clustering Coverage algorithm, under visual ranges of 0.5m, 1m,

and 1.5m.

4.5.4 Building the Tour

Having built the clusters on the Reduced Graph, we use two algorithms to build

the tours on the clusters:

Double-Minimum Spanning Tree (Double-MST)

Takes a cluster as an input and returns a cycle whose length is twice the length of

the cluster. In this algorithm, every edge of the cluster is visited twice.

Chained Lin-Kernighan (CLK)

A modification of the Lin-Kernighan algorithm [86], is generally considered to

be one of the best heuristic methods for generating optimal or near-optimal solu-

tions for the Traveling Salesman Problem (TSP) [11]. Given the distance between

each pair of a finite number of nodes in a complete graph, the Traveling Salesman

Problem is to find the shortest tour passing through all the nodes exactly once and

returning to the starting node [12].

Having built the clusters on the Reduced Graph, the Chained Lin-Kernighan

algorithm takes the distance matrix of the guards of each cluster in the initial VG

or CDT graph as an input, and finds the shortest tour passing through all the guards

of the cluster. The matrix represents the shortest path distances between all pairs of

guards of the cluster in the initial VG or CDT graph, without taking into account any

additional guards other than the ones existing in the cluster. However, the shortest
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path between the guards in the cluster can include any nodes of the workspace.

This guarantees that if there is not an overlap among the guards of the generated

clusters, then there will not be any overlap among the guards of the tours either

after applying the Chained Lin-Kernighan algorithm on the clusters. The input to

the Chained Lin-Kernighan algorithm should be a complete graph and the distance

matrix is indicative of a complete graph, even though the clusters themselves are

not complete.

Clearly, the length of each cluster built on the Reduced Graph is strictly less

than the length of the tour built on the cluster by the Chained Lin-Kernighan algo-

rithm.

4.5.5 Overlap Among the Tours

Overlap (existence of common guards) among the tours generated by the Cluster-

based algorithms affects the performance of the algorithms in some cases. The

affected cases will be discussed in the Evaluation and Experimental Simulations

section (Section 4.8).

In summary, there is no overlap among the tours built by the Uninformed Clus-

tering Coverage and the Node-based Clustering Coverage algorithms, using either

Double-MST or CLK. The reason is that the original clusters (before building the

tours on them) generated by these two coverage algorithms have no overlap on the

guards. However, there may be some unresolved overlaps among the clusters and

as a result among the tours generated by Edge-based Clustering Coverage, using

either Double-MST or CLK. In the event of an overlap among the tours, the robots

assigned to each of the overlapped tours, all have to traverse the common parts

among themselves.

4.5.6 Example Solutions

Figures 4.8, 4.9, 4.10, and 4.11 show the tours built on different workspaces under

various visual ranges of the robots, using the three cluster-based algorithms: Unin-

formed Clustering Coverage (UCC), Edge-based Clustering Coverage (ECC), and

Node-based Clustering Coverage (NCC).
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(a) NCC, WS=10m×10m,VR=0.5m (b) NCC, WS=10m×10m,VR=0.5m

(c) ECC, WS=10m×12m, VR=1m (d) ECC, WS=10m×12m, VR=1m

(e) NCC, WS=10m×12m, VR=1m (f) NCC, WS=10m×12m, VR=1m

Figure 4.8: Computed Tours by Different Coverage Algorithms
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(a) UCC, WS=10m×12m, VR=1.5m (b) UCC, WS=10m×12m, VR=1.5m

(c) NCC, WS=10m×10m,VR=1m (d) NCC, WS=10m×10m,VR=1m

(e) NCC,WS=10m×10m,VR=0.75m (f) NCC,WS=10m×10m,VR=0.75m

Figure 4.9: Computed Tours by Different Coverage Algorithms
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(a) ECC, WS=10m×10m,VR=1m (b) ECC, WS=10m×10m,VR=1m

(c) NCC, WS=10m×10m,VR=1m (d) NCC, WS=10m×10m,VR=1m

(e) NCC, WS=10m×10m,VR=0.5m (f) NCC, WS=10m×10m,VR=0.5m

Figure 4.10: Computed Tours by Different Coverage Algorithms
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(a) NCC, WS=10m×10m,VR=0.5m (b) NCC, WS=10m×10m,VR=0.5m

(c) ECC, WS=10m×10m,VR=0.5m (d) ECC, WS=10m×10m,VR=0.5m

(e) NCC, WS=10m×12m, VR=0.75m (f) NCC, WS=10m×12m, VR=0.75m

Figure 4.11: Computed Tours by Different Coverage Algorithms
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4.6 Cyclic Coverage
We use the repeated version of the Cyclic Coverage algorithm (Algorithm 4.5)

from Chapter 3 as a benchmark to compare the coverage algorithms. Similar to the

Cluster-based coverage algorithms, Cyclic Coverage locates the guards, and builds

the graph (VG or CDT). However, rather than reducing and partitioning the graph

among the robots, it creates a tour passing through all the guards of the graph,

using the Chained Lin-Kernighan algorithm (line 2). The input of the Chained

Lin-Kernighan algorithm is the distance matrix of the guards in the VG or CDT

graph. The robots are then distributed equidistantly around the tour and traverse

the whole tour repeatedly over time (line 3).

Given the set of guards in the original VG or CDT graph, Cyclic Coverage pro-

duces optimal or near-optimal solutions for the single-robot case under Total Path

Length and the Total Worst Visiting Period. The notion of Balance in Workload

Distribution is not defined in this approach, since all the robots traverse the whole

tour built on the original graph.

Figure 4.12 illustrates the tour built for five robots on the sample workspace by

the Cyclic Coverage algorithm, under visual ranges of 0.5m, 1m, and 1.5m.

Algorithm 4.5: Cyclic Coverage
Input:
Gvis−cdt(Vvis−cdt ,Evis−cdt), where Vvis−cdt = SG

⋃
P /* VG or CDT */

SG = {g1,g2, ....,gm} /* Static Guards */
P = {p1, p2, ...., pn} /* Workspace Nodes */
|R|: Number of Robots

Output:
A tour, dTour, distributed among the robots, passing through all the guards
of the VG or CDT graph.

1 begin
2 tour←− BuildTour(Gvis−cdt)
3 dTour←− DistributeRobots(tour, |R|)
4 return dTour
5 end
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(a) VG, VR=0.5m (b) VG, VR=1m

(c) VG, VR=1.5m

Figure 4.12: Tours Built by Five Robots by Cyclic Coverage

4.7 Complexity Analyses of the Algorithms
Similar to the single coverage problem, the basic version of the repeated cover-

age problem with just one robot with unlimited visual range operating in a simple

polygon without obstacles has an exact polynomial time solution [24, 126]. But,

extending the problem to include obstacles in the workspace, to multiple robots, or

to limited visual range, makes the corresponding decision problems NP-hard [97].

Interestingly, it is not even possible to develop polynomial approximation algo-

rithms, when optimizing each of the metrics (TPL, TAVP, TWVP, and BWD) defined

for the repeated coverage problem, unless P = NP [100]. Furthermore, optimiz-
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Stages of the Algorithm Time Complexity

Locating Guards O(n2 log2 n)

Building Graph
Visibility Graph O((n+m)3)

Constrained Delaunay Triangulation O((n+m)log(n+m))

Graph Reduction O(m3)

Clustering the Reduced Graph

Uninformed Clustering O(|R|(n′+m))
Edge-based Clustering O(|R|mlog(m))
Node-based Clustering O(|R|Im)+O(m2)

Cyclic Coverage Chained Lin-Kernighan O(m2.2)a

Building Tours
Double-MST O(n′+m)

Chained Lin-Kernighan O(m2.2)a

Table 4.1: Time Complexity of Different Stages of the Repeated Coverage Algo-
rithms. n: Number of Workspace Nodes, n′: Number of Workspace Nodes in the
Reduced Graph, m: Number of Guards, I: Number of Iterations of the Algorithm,
|R|: Number of Robots

ing all the metrics simultaneously is another challenge, because some are mutually

conflicting in the coverage problem.

The time complexity of the stages of the proposed coverage algorithms are

shown in Table 4.1.

4.8 Evaluation and Experimental Simulations
The goal of the experiments is to evaluate the performance of the four repeated

coverage algorithms:

• Uninformed Clustering Coverage (UCC)

• Edge-based Clustering Coverage (ECC)

• Node-based Clustering Coverage (NCC)

• Cyclic Coverage (CC)
aThis entry is based on experimental results [11, 86]. The worst case time complexity of the

Chained Lin-Kernighan algorithm is apparently not available in the literature [69].
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under the effect of the following independent variables:

• Robots’ visual range.

• Environment representation (i.e. the combination of the graph

representation and the tour building algorithms).

For the environment representation, we have four combinations of the graph

representation and the tour building algorithms:

• Visibility Graph (VG) and Double-MST

• Visibility Graph (VG) and Chained Lin-Kernighan (CLK)

• Constrained Delaunay Triangulation (CDT) and Double-MST

• Constrained Delaunay Triangulation (CDT) and Chained Lin-Kernighan

(CLK)

The performance of the coverage algorithms is evaluated based on these crite-

ria:

• Total Path Length (TPL)

• Total Average Visiting Period (TAVP)

• Total Worst Visiting Period (TWVP)

• Balance in Workload Distribution (BWD)

We perform the experiments on the 30 maps used in Chapter 3. The size of

the environments is 15m× 15m. Robots are assumed to move with the speed of

1m/s in the target area. In order to eliminate the dependency of the results on spe-

cific maps, we use the results of Cyclic Coverage with Visibility Graph under TPL,

TAVP, and TWVP as the reference and the results of the coverage algorithms on

each map under these metrics, are normalized as ratios to the reference solution.

For optimization metrics TPL, TAVP, and TWVP, the average values of ratios over

all the maps are shown respectively in Figures 4.13, 4.14, and 4.15 for different
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numbers of robots (1,2, . . . ,15), under the selected visual ranges. Note that the fig-

ures do not demonstrate the average of the actual values of the coverage algorithms

but the average normalized ratios to the reference solution over all the maps. That

is why the values of Cyclic Coverage with Visibility Graph, shown by the red line

in plots 4.13, 4.14, and 4.15, is fixed (equal to 1) for different number of robots.

For BWD, since the values are bounded between 0 and 100, we show the average

of the actual values over all the maps in Figure 4.16.

In sum, we have collected data from 9000 = 4 Coverage Algorithms×
15 #Robots×5 Visual Ranges×30 Maps runs of the simulator. The results can be

used as a framework for choosing an appropriate combination of repeated coverage

algorithm, environment representation, and the robots’ visual range based on the

particular workspace and the metric to be optimized.

4.8.1 Running Time of the Algorithms

Table 4.2 shows the average running time of all the stages of building a Reduced

Graph over all the maps, under the selected visual ranges of the robots. The stages

include: computing the guards, building the graph (VG or CDT), and reducing the

graph.

Tables 4.3, 4.4, 4.5, and 4.6 respectively show the average running time of the

Uninformed Clustering Coverage (UCC), Edge-based Clustering Coverage (ECC),

Node-based Clustering Coverage (NCC), and the Cyclic Coverage (CC) algorithms

over all the maps and all number of robots, under the selected visual ranges of the

robots and the two tour building algorithms.

The developed software is in Java and C++, and the simulations were run on a

single-core Pentium 4 (3.2Ghz) desktop computer, with 3GB of memory.

4.8.2 Results for Total Path Length

Figure 4.13 shows the performance of the coverage algorithms under Total Path

Length on the basis of the pre-determined visual ranges of the robots, and the

choice of environment representation.

Effect of Robots’ Visual Range: In all the tested visual ranges for the robots, at
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Visual Range 0.25m 0.5m 0.75m 1m 1.5m

Reduced Graph 13352 1494 599 496 492

Table 4.2: Building Reduced Graph Running Time (msec)

Visual Range 0.25m 0.5m 0.75m 1m 1.5m

UCC-DMST 109 80 71 71 71

UCC-CLK 48628 3060 383 238 232

Table 4.3: UCC Running Time (msec)

Visual Range 0.25m 0.5m 0.75m 1m 1.5m

ECC-DMST 43725 3306 483 180 169

ECC-CLK 95369 9229 847 336 320

Table 4.4: ECC Running Time (msec)

Visual Range 0.25m 0.5m 0.75m 1m 1.5m

NCC-DMST 2048 295 102 81 79

NCC-CLK 49598 5434 481 260 240

Table 4.5: NCC Running Time (msec)

Visual Range 0.25m 0.5m 0.75m 1m 1.5m

CC 711 210 129 121 114

Table 4.6: CC Running Time (msec)

least one of the Cluster-based algorithms (i.e., Uninformed Clustering Coverage)

outperforms Cyclic Coverage (p < 0.01), and interestingly, as the visual range of

the robots increases, there are more Cluster-based algorithms dominating Cyclic

Coverage, especially in the scenarios in which more robots are involved.

Increasing the robots’ visual range leads to increase in the distance between

the guards computed in the environments, and as a result increase in the the length
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(e) Robots’ Visual Range = 1.5m

Figure 4.13: Total Path Length. CC:Cyclic Coverage, UCC:Uninformed Cluster-
ing Coverage, ECC: Edge-based Clustering Coverage, NCC: Node-based Clus-
tering Coverage, DMST:Double-MST, CLK:Chained Lin-Kernighan, VG:Visibility
Graph, CDT:Constrained Delaunay Triangulation
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of the edges of the graph built on the environment. Subsequently, Cluster-based

algorithms remove the edges in between the clusters, unless the resultant clusters

overlap one another when using Edge-based Clustering Coverage. Increasing

the visual range and the number of robots leads to, respectively, longer and more

edges being removed from the Reduced Graph, and consequently improving the

Total Path Length by the Cluster-based algorithms.

Effect of Environment Representation: As for the impact of the VG and the

CDT on the performance of the algorithms, we did not find a significant difference

between the two under TPL. However, as for the impact of the tour building

algorithms, all the coverage methods perform significantly better under CLK than

Double-MST (p < 0.01), but this superiority declines with the increase of the

robots’ visual range and the number of robots. Increasing the robots’ visual range

leads to fewer guards being computed in the environment, and as a result decrease

in the size of the graph and the Reduced Graph (in terms of the number of edges)

built on the environment. Increasing the number of robots also leads to smaller

clusters being built out of the Reduced Graph, and as the size of the clusters

declines, the difference between Double-MST and CLK built on the clusters

declines as well.

Conclusion: Uninformed Clustering Coverage, with no overlap among the tours

it builds and removing the longest edges of the Reduced Graph, outperforms the

other algorithms including Cyclic Coverage under Total Path Length. Node-based

Clustering Coverage also dominates Edge-based Clustering Coverage (p < 0.01).

Overlaps among the tours generated by Edge-based Clustering Coverage dilutes

the algorithm’s performance under Total Path Length.

Overall, the results imply that although, given the set of guards in the original

VG or CDT graph, Cyclic Coverage produces optimal or near-optimal solutions

for single-robot cases, it is not the best solution when extending the problem to

multi-robot scenarios.

Under TPL, the coverage algorithms show similar performance under the two

graph representation algorithms (i.e., VG and CDT), but the choice of tour building

algorithm significantly affects the coverage approaches, in that using CLK leads to
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shorter paths for the robots compared with Double-MST.

4.8.3 Results for Total Average Visiting Period

Figure 4.14 shows the performance of the coverage algorithms under Total Average

Visiting Period on the basis of the pre-determined visual ranges of the robots, and

the choice of environment representation.

Effect of Robots’ Visual Range: As the visual range of the robots increases, the

Cluster-based algorithms show better performance. For visual ranges of 0.75m,

1m, and 1.5m, both the Node-based Clustering Coverage (p < 0.01) and the Edge-

based Clustering Coverage (p < 0.01) algorithms dominate Cyclic Coverage, es-

pecially in the scenarios in which more robots are involved. However, for small

visual ranges (i.e., 0.25m), Cyclic Coverage is the best choice of the coverage

mission (p < 0.01). For visual range of 0.5m, Node-based Clustering Coverage,

Edge-based Clustering Coverage and Cyclic Coverage are all in balance.

Similar to the Total Path Length, increasing the visual range and the number

of robots leads to respectively longer and more edges being removed from the

Reduced Graph by the Cluster-based algorithms, enabling them to outperform

Cyclic Coverage under Total Average Visiting Period. Node-based Clustering

Coverage and Edge-based Clustering Coverage also outperform Uninformed

Cyclic Coverage (p < 0.01) by building more balanced clusters (see Section

4.8.5), helping improve the Total Average Visiting Period.

Effect of Environment Representation: As for the impact of the VG and the

CDT on the performance of the algorithms, we did not find a significant difference

between the two under TAVP. However, as for the impact of the tour building

algorithms, all the Cluster-based algorithms perform better under Double-MST

than CLK (p < 0.01). Double-MST leverages overlapped paths for the robots, and

so improves the performance under Total Average Visiting Period compared to

CLK which discourages overlapped paths.

Conclusion: Node-based Clustering Coverage and Edge-based Clustering Cover-
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(b) Robots’ Visual Range = 0.5m
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(c) Robots’ Visual Range = 0.75m
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(e) Robots’ Visual Range = 1.5m

Figure 4.14: Total Average Visiting Period. CC:Cyclic Coverage,
UCC:Uninformed Clustering Coverage, ECC: Edge-based Clustering Coverage,
NCC: Node-based Clustering Coverage, DMST:Double-MST, CLK:Chained
Lin-Kernighan, VG:Visibility Graph, CDT:Constrained Delaunay Triangulation
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age are the best options when working with robots having medium and large visual

ranges, and Cyclic Coverage is the choice of the coverage mission for robots with

small visual ranges.

Under TAVP, the coverage algorithms show similar performance under the two

graph representation algorithms (i.e., VG and CDT), but the choice of the tour

building algorithm significantly affects the coverage approaches, such that using

Double-MST outperforms CLK in minimizing the Total Average Visiting Period of

the points in the target area.

4.8.4 Results for Total Worst Visiting Period

Figure 4.15 shows the performance of the coverage algorithms under Total Worst

Visiting Period on the basis of the pre-determined visual ranges of the robots, and

the choice of environment representation.

Effect of Robots’ Visual Range: Cyclic Coverage dominates the Cluster-based

algorithms under Total Worst Visiting Period in all the tested visual ranges for the

robots (p < 0.01). Node-based Clustering Coverage also outperforms the other

Cluster-based algorithms (p < 0.01). Node-based Clustering Coverage builds

more balanced clusters compared to Uninformed Clustering Coverage (see Section

4.8.5), and builds clusters with no overlap compared to Edge-based Clustering

Coverage. More balanced and less overlapped clusters helps improve the Total

Worst Visiting Period.

Effect of Environment Representation: As for the impact of the VG and the

CDT on the performance of the algorithms, we did not find significant difference

between the two under TWVP. However, as for the impact of the tour building

algorithms, all the coverage mechanisms perform significantly better under CLK

than Double-MST (p < 0.01), but this superiority declines with the increase of

the robots’ visual range and the number of robots. Increasing the robots’ visual

range leads to fewer guards being computed in the environment, and as a result

decrease in the size of the graph and the Reduced Graph (in terms of the number

of edges) built on the environment. Increasing the number of robots also leads
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(c) Robots’ Visual Range = 0.75m
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(e) Robots’ Visual Range = 1.5m

Figure 4.15: Total Worst Visiting Period. CC:Cyclic Coverage, UCC:Uninformed
Clustering Coverage, ECC: Edge-based Clustering Coverage, NCC: Node-
based Clustering Coverage, DMST:Double-MST, CLK:Chained Lin-Kernighan,
VG:Visibility Graph, CDT:Constrained Delaunay Triangulation
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to smaller clusters being built out of the Reduced Graph, and as the size of the

clusters declines, the difference between Double-MST and CLK built on the

clusters declines as well.

Conclusion: Cyclic Coverage is the best choice for minimizing the Total Worst

Visiting Period, regardless of the visual range of the robots.

Under TWVP, the coverage algorithms show similar performance under the two

graph representation algorithms (i.e., VG and CDT), but the choice of tour building

algorithm affects the coverage approaches especially in small visual ranges, such

that using CLK outperforms Double-MST in minimizing the Total Worst Visiting

Period of the points in the target area.

4.8.5 Results for Balance in Workload Distribution

Figure 4.16 shows the performance of the coverage algorithms under Balance

in Workload Distribution on the basis of the pre-determined visual ranges of the

robots, and the choice of environment representation.

Effect of Robots’ Visual Range: For small visual ranges (i.e., 0.25m, 0.50m), we

noticed slight improvements in the Balance in Workload Distribution with the in-

crease in the number of robots in the environment. However, for visual range of

0.75m, this improvement disappears for the Node-based Clustering Coverage and

the Edge-based Clustering Coverage algorithms, and for visual ranges of 1m and

1.5m, the Balance in Workload Distribution declines in both the algorithms, espe-

cially in Node-based Clustering Coverage and in scenarios in which more robots

are involved.

As discussed before, increasing the robots’ visual range leads to fewer guards

being computed in the environment, and as a result decrease in the size of the

graph and the Reduced Graph (in terms of the number of edges) built on the

environment. Conseuqntly, increasing the number of robots (i.e., increasing the

number of clusters) in the environment makes building balanced clusters out of the

Reduced Graph more difficult. Edge-based Clustering Coverage is less affected

by this issue, as it maintains some overlaps among the clusters.
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(b) Robots’ Visual Range = 0.5m
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(c) Robots’ Visual Range = 0.75m
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(d) Robots’ Visual Range = 1m
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(e) Robots’ Visual Range = 1.5m

Figure 4.16: Balance in Workload Distribution. UCC:Uninformed Clustering
Coverage, ECC: Edge-based Clustering Coverage, NCC: Node-based Cluster-
ing Coverage, DMST:Double-MST, CLK:Chained Lin-Kernighan, VG:Visibility
Graph, CDT:Constrained Delaunay Triangulation
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Effect of Environment Representation: As for the impact of the VG and the CDT

on the performance of the algorithms, we did not find any significant difference

between the two under BWD. However, as for the impact of the tour building

algorithms, all the Cluster-based algorithms perform slightly better under CLK

than Double-MST (p < 0.01).

Conclusion: For small visual ranges, Node-based Clustering Coverage is the best

choice for balancing the workload distribution among the robots in the coverage

mission; however, with the increase of the visual range, Edge-based Clustering

Coverage dominates the Node-based Clustering Coverage algorithm for maximiz-

ing the Balance in Workload Distribution.

Under BWD, the coverage algorithms show similar performance under the two

graph representation algorithms (i.e., VG and CDT), but the choice of tour build-

ing algorithm affects the coverage approaches, such that using CLK slightly out-

performs the Double-MST in maximizing the Balance in Workload Distribution

among the robots.

4.9 Summary and Conclusions
We have addressed the problem of repeated coverage of a target area, of any polyg-

onal shape, by a team of robots each having a limited circular visual range. Four

optimization criteria were defined to evaluate the performance of the robot team

in the target areas. These metrics include Total Path Length (TPL), Total Average

Visiting Period (TAVP), Total Worst Visiting Period (TWVP), and the Balance in

Workload Distribution (BWD).

Three distributed Cluster-based algorithms, namely: Uninformed Clustering

Coverage, Edge-based Clustering Coverage, Node-based Clustering Coverage

were introduced for the problem. Cyclic Coverage, used as a benchmark to com-

pare the algorithms, produces optimal or near-optimal solutions for the single-

robot case, in the VG or CDT graph built on the workspace, and under TPL and

TWVP.

We conducted an extensive experimental analysis to evaluate the performance
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of the algorithms. In summary:

• Under all the optimization criteria, the coverage algorithms show similar

performance under the two graph representation algorithms, VG and CDT.

• Under TPL, TWVP, and BWD, all the Cluster-based algorithms perform bet-

ter under CLK than Double-MST.

• Under TAVP, all the Cluster-based algorithms perform better under Double-

MST than CLK.

• Under TPL, in all the tested visual ranges for the robots, at least one of

the Cluster-based algorithms (i.e., Uninformed Clustering Coverage) out-

performs Cyclic Coverage, and as the visual range of the robots increases,

there are more Cluster-based algorithms dominating Cyclic Coverage, espe-

cially in the scenarios in which more robots are involved.

• Under TAVP, Node-based Clustering Coverage and Edge-based Clustering

Coverage are the best options when working with robots having medium

and large visual ranges, and Cyclic Coverage is the choice of the coverage

mission for robots with small visual ranges.

• Under TWVP, Cyclic Coverage dominates the Cluster-based algorithms in

all the tested visual ranges for the robots.

• Under BWD, for small visual ranges, Node-based Clustering Coverage is the

best choice for balancing the workload distribution among the robots; how-

ever, with the increase of the visual range, Edge-based Clustering Coverage

dominates the Node-based Clustering Coverage algorithm for maximizing

the BWD.

The results can be used as a framework for choosing an appropriate combina-

tion of repeated coverage algorithm, environment representation, and the robots’

visual range based on the particular workspace and the metric to be optimized.
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Chapter 5

On Multi-Robot Repeated
Boundary Coverage

5.1 Problem Definition and Preliminaries
In this chapter, we address the Multi-Robot Repeated Boundary Coverage problem

with the following specifications:

5.1.1 Workspace

Assumption 5.1. The workspace, W⊂ R2, is a given polygon containing polygo-

nal structures.

5.1.2 Robots

Assumption 5.2. The robots, R, are assumed to have a 360 ◦ field of view and a

predefined circular limit of visual range.

Assumption 5.3. Line-of-sight communication is assumed among the robotsa. This

type of communication can only occur when the transmitting and the receiving

robots are in direct view of each other, with no obstacle between them.

aWe previously investigated the robots having limited circular communication range in [50] and
[51].
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5.1.3 Events

Assumption 5.4. The events may occur at any position on the boundaries.

Assumption 5.5. The events may have different types. Each event type has its own

importance weight.

Definition 5.1. Event Type: m types of events may occur on the boundaries. The

set of all event types is E = {E1,E2, ...,Em}. Similarly, an event of type Ei is

denoted as ei.

Definition 5.2. Event Importance: The importance of an event of type E is given

by weight(E). It is assumed that weight(E)∈ (0,1] such that 1 is the highest degree

of importance. The importance can also be referred to as the priority, in that an

event of higher importance should have higher priority to be detected.

Assumption 5.6. The boundaries are heterogeneous, in that events of one type

may occur with varied probabilities on different parts of the boundaries, and this

probability may change over time.

Assumption 5.7. A robot can detect an event, if the event is within the visual range

of the robot.

Assumption 5.8. Once a robot detects an event, the event is discarded from the

boundary. In other words, an event is detected only once.

Assumption 5.9. A robot is aware of the type of an event and its importance weight

once it detects the event.

Assumption 5.10. The robots are not a priori aware of the probability distribution

of the events on the boundaries.

Assumption 5.11. The reward a robot receives for detecting an event depends on

how early the event is detected. At each time step after the event occurrence, the

detection reward of the event is decreased by a multiplicative discount factor.

The goal of the robot team is to maximize the total detection reward of the

events.
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As far as we are aware, there is no work using the boundary coverage frame-

work studied in this chapter. In our work, instead of patrolling a single open or

closed polyline, the robots patrol the inner boundaries of a full environment and

the structures inside it, and it is assumed that different parts of the boundaries may

have different priorities depending on the probability distribution of the events.

Also, our robots can detect multiple events/intruders simultaneously, as opposed to

single intruder scenarios studied in previous work.

To address the problem, two classes of algorithms are proposed: (1) Unin-

formed Boundary Coverage and (2) Informed Boundary Coverage.

Uninformed Boundary Coverage uses a heuristic algorithm for the Traveling

Salesman Problem to patrol the boundaries. On the other hand, Informed Bound-

ary Coverage is primarily based on an online algorithm in which each robot au-

tonomously learns the event distribution on the boundaries. Based on the policy

being learned, each robot then plans in a distributed manner to select the best pos-

sible path to visit the most promising parts of the boundary.

The performance of the proposed algorithms is evaluated on the basis of the

total reward received by the team during a finite period of time. We also inves-

tigate how robots’ visual range, and communication among the robots affect the

performance of the robot team in the coverage problem, and how event frequency

affects the impact of communication on the robots’ performance.

5.2 Environment Modeling
Uninformed Boundary Coverage and Informed Boundary Coverage both require

that a roadmap is built within the workspace, capturing the connectivity of the free

space close to the boundaries. To this end, a graph-based representation called the

Boundary Graph is constructed on the workspace. The Boundary Graph enables

the robots to move throughout the workspace to monitor the boundaries of the

area and the structures inside. Since the workspace is known to the robots, each

robot can independently build the Boundary Graph in the target area. In order to

construct the Boundary Graph, a sufficient number of control points, called the

boundary guards, are placed within the workspace, considering the limited visual

range of the robots.
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(a) Original Map (b) Area Guards

(c) Boundary Guards (d) Boundary Graph

Figure 5.1: Sequential Stages of Building the Boundary Graph

5.2.1 Locating Boundary Guards with Limited Visual Range

In our problem definition, we presume the robots are equipped with panoramic

cameras with a 360 ◦ field of view. However, the cameras’ visual range is limited.

The proposed approach initially locates a set of guards within the workspace, ac-

cording to the robots’ limited visual range. As mentioned in Chapter 3, these static

guards are control points from which the whole workspace can be jointly observed.

In other words, if there are as many robots as there are guards, and each robot were
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stationed on a guard, the entire area would be visible to the robots.

Since, in the current problem, we are interested in monitoring only the bound-

aries, not all the computed area guards are necessary. So, each guard such that the

visual area of a robot does not intersect the boundaries when it is located on that

guard is removed from the set of area guards. Figure 5.1c illustrates the boundary

guards (BG) computed on the sample workspace of Figure 5.1a.

BG = {g1,g2, ...,gk}. (5.1)

5.2.2 Boundary Graph

Once the boundary guards are located in the target area, a Visibility Graph (VG) is

constructed on the guards and the nodes of the workspace (Figure 5.1d). In order

to build the Visibility Graph, any pair of nodes (i.e., boundary guard or workspace

node) which are mutually visible are connected by an edge. Two nodes are mutu-

ally visible if the edge connecting them does not intersect any structure within the

workspace.

Visibility Graph is used to build the roadmap, because it provides the robots

with more paths and more freedom of movement to traverse the target area, com-

pared to other representations such as Constrained Delaunay Triangulation or

Voronoi Diagram.

5.2.3 Boundary Segmentation

The boundaries of the area and the structures are divided into identical length seg-

ments, each of which is small enough such that if an event occurs in a segment, the

event is visible from any part of that segment. In other words, if a robot’s visual

range covers just part of a segment on the boundary, the robot is still capable of

detecting all the events occurring in any part of the segment. This fact is based on

the assumption that events have some extension on the boundary.

Segments = {seg1,seg2, ...,segn}. (5.2)

Definition 5.3. Visual Area of a Guard (VA): The visual area of a guard, VA(g),

is the set of all the segments visible to the robot when it is located on the guard g.
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Figure 5.2: Boundary Segmentation

VA(g) = {segi,seg j, ...,segs}. (5.3)

Definition 5.4. Shared Segment: A shared segment is common to the visual area

of two or more guards.

Definition 5.5. Segment Parent Guards (SPG): Parent guards of a shared segment

are guards whose visual area contain that segment.

SPG(seg) = {gi,g j, ...,gp}. (5.4)

The notion of segment parent guards implies that an event occurred in a seg-

ment can be detected when and only when a robot is located at one of the parent

guards of the segment. An event is detected only once.

Assumption 5.12. Events are only detected when a robot is located on a guard.

In Figure 5.2, the visual area of guard A covers segments 1 and 2, and the visual

area of guard B covers segments 2 and 3. Segment 2 is a shared segment between

guards A and B, and subsequently, guards A and B are the parent guards of segment

2. A robot located on guard A can detect the events that occurred in any part of

segments 1 and 2, and a robot located on guard B can detect the events occurred in

any part of segments 2 and 3.
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Algorithm 5.1: Uninformed Boundary Coverage
Input:
GBoundary(VBoundary,EBoundary), where VBoundary = BG

⋃
P

BG = {g1,g2, ....,gk} /* Boundary Guards */
P = {p1, p2, ...., pn} /* Workspace Nodes */
|R|: Number of Robots

Output:
A tour, dTour, distributed among the robots, passing through all the guards
of the Boundary Graph

1 begin
2 tour←− BuildTour(GBoundary)
3 dTour←− DistributeRobots(tour, |R|)
4 return dTour
5 end

5.3 Uninformed Boundary Coverage
In Uninformed Boundary Coverage (Algorithm 5.1), a tour is constructed on the

Boundary Graph using the Chained Lin-Kernighan algorithm.

The input of the Chained Lin-Kernighan algorithm is the distance matrix of

the Boundary Graph. The matrix consists of the shortest path distances between

all pairs of guards in the Boundary Graph, and is consequently indicative of a com-

plete graph, even though the Boundary Graph itself is not complete. Having built

the shortest tour passing through all the guards of the Boundary graph, the robots

position themselves equidistantly around the tour and move repeatedly around it in

the same direction.

5.4 Informed Boundary Coverage
In Informed Boundary Coverage, the robots try to maximize the total detection

reward of the events. To this end, each robot independently learns the event dis-

tribution on the boundaries and estimates the expected reward of visiting a state in

the target area at each time step. Each robot then plans in a decentralized manner

to select the best possible path to visit the most promising states in the target area.
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The initial locations of the robots are chosen randomly in the target area.

The Multi-Robot Repeated Boundary Coverage problem is formulated as a tu-

ple (R,BG,A,ST,ST R) where:

• R is the set of robots involved in the coverage mission.

• BG is the set of states or boundary guards, representing the position of the

robots in the target area.

• A is the set of actions available for a robot in each state. An action is defined

as moving from one guard to any other guard in the Boundary Graph. At

the beginning, each robot calculates the shortest path between each pair of

guards in the Boundary Graph using the Floyd-Warshall algorithm. Hence,

the robots will not need to repeatedly compute the shortest paths in the graph

during the planning stage of the coverage mission.

• ST is the state transition function which is deterministic, in that it guarantees

reaching the target state chosen by the robots from the current state, when

the action is performed.

• ST R is the state reward at a particular time, which is the sum of the dis-

counted importance of the events at the state (i.e., boundary guard):

ST R(g, t) = ∑
seg∈VA(g)

∑
Ei∈E

∑
ei∈Ei

weight(Ei)× γ
t−st(ei), (5.5)

where t− st(ei) is the time interval between starting event ei and the time t.

Once a robot arrives at a guard g, it can detect all the events that occurred

within the VA(g), the visual area of the guard g. It is assumed that the reward

a robot receives for an event depends on how early the event is detected. At

each time step after the event occurrence, the detection reward of the event

is multiplied by a discount factor of γ = 0.95. The discount factor, γ , was

chosen by a trial and error procedure.

Definition 5.6. Time of Last Visit (TLV): Each robot separately keeps track of the

times of the last visit to the guards. If BG = {g1,g2, ...,gk} is the set of boundary
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guards, then for each guard g ∈ BG, T LVr(g) represents the last time the guard g

was visited by robot r ∈ R, or by any other robot who managed to communicate

its visit to the guard to robot r. Therefore, the times of the last visit to the guards

are not globally shared by the robot team, rather each robot, at each time step, may

have different beliefs from the rest of the robot team of the times of the last visit to

the guards.

Subsequently, robot r can calculate the time of the last visit to each segment of

the boundary:

T LVr(seg) = max{T LVr(g)|g ∈ SPG(seg)} . (5.6)

Intuitively, the time of the last visit to a segment is the most recent visit of robot

r, or any other robot who communicates to robot r its visit to one of the segment’s

parent guards.

Definition 5.7. Policy: A policy π(r) : BG→ A at each state determines which

action should be performed next by robot r.

Note that the learning procedure described below is performed by each robot

independently of the rest of the team.

5.4.1 Learning

If robot r had complete knowledge of the starting time of the events in each state,

it would be able to calculate the STR to find a policy, maximizing the total reward

of the boundary coverage mission, but since this information is not available to the

robot, it estimates the STR as the sum of the Expected Segment Reward (ESR) of

the segments comprising a state:

ST Rr(g, t)' ∑
seg∈VA(g)

(ESRr(seg, t)). (5.7)

Expected Segment Reward (ESR) is defined to represent the expected reward of

a segment, seg, at the time t:
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ESRr(seg, t) = ∑
Ei∈E

∑
ei∈Ei

(1+ γ
1 + γ

2 + ...+ γ
t−T LVr(seg))×

PSEr(Ei,seg)×weight(Ei),

(5.8)

where γ is the reward discount factor. We assume that for every time step after an

event occurs without being detected, the event detection reward is discounted by

γ . Furthermore, the Probability of Segment Event (PSE) is defined for each event

type Ei ∈ E and each segment, seg, to indicate the probability of events of type Ei

occur within the segment at each time step.

In equation (8), ∑Ei∈E ∑ei∈Ei PSEr(Ei,seg)× weight(Ei) is the Segment Re-

ward Accumulation Rate of the events in the segment, seg, and is represented by

SRARr(seg). If robot r knows the SRAR of the events in a segment, it can calculate

the segment’s ESR for any arbitrary time t.

Estimating the SRAR of the Segments

In the initialization step, the robot assumes the SRAR of all the segments is 1. A

learning procedure for estimating the SRAR of the segments gradually updates their

initial value. When the robot arrives at a guard g, it can detect whether or not an

event has occurred at the segments belonging to VA(g). The SRAR of the guard’s

segments is then updated using the following equation:

∀seg ∈VA(g), SRARr(seg) =

(1−α)×SRARr(seg)+α× ∑Ei∈E ∑ei∈Ei(weight(Ei))

tr(g)−T LVr(seg)
,

(5.9)

where α is the learning rate set to 0.9 and tr(g) is the time of the visit to the guard

g by robot r. The learning rate, α , was chosen by a trial and error procedure. This

equation gives more weight to the new information than the old information. The

robot performs the updating process for all the event types and all the segments of

the guards.

In summary, the SRAR of a segment is updated once the robot visits one of its

parent guards. As already mentioned, the SRAR represents the reward accumu-

lation rate in a segment. Now we can use the SRAR to estimate the ESR of the

segments using the following procedure.

86



Estimating the ESR of the Segments

At the beginning of the mission, robot r initializes the ESR of all the segments to

zero. Then, at each time step, if the robot has yet to arrive at a guard, the ESR of

all the segments of the boundary is updated using the following equation:

∀seg ∈ Segments,

ESRr(seg, t) = γ×ESRr(seg, t−1)+SRARr(seg).
(5.10)

If robot r arrives at a guard g, it detects all the events that have occurred in its

segments and communicates the guard ID to the robots located in its line-of-sight.

Since all the events occurred in the segments of g have been detected, the expected

reward of the segments at the time of the visit to the guard, t(g), becomes zero.

Consequently, for the robot and all the communicated robots (cR⊂ R):

∀cr ∈ cR ∀seg ∈VA(g), ESRcr(seg, tcr(g)) = 0. (5.11)

∀cr ∈ cR ∀seg ∈VA(g), T LVcr(seg) =Current Time. (5.12)

Note that each robot has its own knowledge of the ESR of the segments, so

the other robots (except the ones who received the communication) may still as-

sume that there are some undetected events in the segments of g at the time, and

subsequently their ESRs of the segments of g are not zero.

In the Experiments and Results section (Section 5.5), we will show how com-

munication among the robots influences the performance of the algorithm and com-

pare it with the case that robots do not communicate or share any knowledge of the

target area during the operation.

The updating process of the SRAR and the ESR of the segments continues dur-

ing the coverage operation.

5.4.2 Planning

Once a robot arrives at a guard and detects all the events which may have occurred

in the segments of the guard, the robot selects the next action to perform. As

already mentioned, an action is defined as moving from one guard to another guard
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in the Boundary Graph. At each state, the robot considers all the precomputed

shortest paths to all the other guards it can move to. For each path, path(gc,gd),

where gc is the current guard and gd is the destination guard, Path Reward (PR)

is defined as the reward the robot receives when moving from the guard gc to the

guard gd . The path from gc to gd includes zero or more intermediate guards and

can be represented as:

path(gc,gd) = [gc,gi,g j, ...,gr,gd ] . (5.13)

Given the speed of the robot, the arrival time at each of the guards on the path

can be estimated. Hence, robot r can have an estimate of the ESRr(seg, tr(g)) for

each segment of the guard g ∈ path(gc,gd), in which tr(g) is the arrival time of the

robot to the guard g. For such a path, robot r calculates the Path Reward (PR) as

below:

PRr(path(gc,gd)) = ∑
g∈path(gc,gd)

∑
seg∈VA(g)

ESRr(seg, tr(g)). (5.14)

When calculating the PR, the robot should take into account the segments

shared by some parent guards as well, namely the robot in its calculations ini-

tializes the shared segment’s ESR to zero when it is going to visit one of its parent

guards along the path.

Next, for each path, the Average Path Reward (APR) is calculated using the

following equation:

APRr(path(gc,gd)) =
PRr(path(gc,gd))

tr(gd)−T LVr(gc)
, (5.15)

where gc is the current guard, T LVr(gc) is the current time (i.e., the time of the last

visit to the guard gc by robot r), gd is the destination guard, and tr(gd) is the arrival

time of robot r to the guard gd . The robot will select a path with the maximum

Average Path Reward to traverse next.
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Figure 5.3: Maps Used in the Experiments

5.5 Evaluation and Experimental Simulations
We wish to compare Uninformed Boundary Coverage (UBC) with the two variants

of Informed Boundary Coverage (IBC) (i.e. non-communicating and communi-

cating robot teams) in terms of the total reward being received by the team for

detecting the events in a finite simulation time.

The experiments are conducted using 10 robots on the sample workspaces of

Figure 5.3. The size of the workspaces is 10m×10m, and the robots move with a
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(a) Visual Range = 0.5m (b) Visual Range = 0.5m

(c) Visual Range = 1m (d) Visual Range = 1m

(e) Visual Range = 1.5m (f) Visual Range = 1.5m

Figure 5.4: Map 1: Area Guards + Boundary Guards
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(a) Visual Range = 0.5m (b) Visual Range = 0.5m

(c) Visual Range = 1m (d) Visual Range = 1m

(e) Visual Range = 1.5m (f) Visual Range = 1.5m

Figure 5.5: Map 1: Boundary Graph + Tour Computed by UBC
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(a) Visual Range = 0.5m (b) Visual Range = 0.5m

(c) Visual Range = 1m (d) Visual Range = 1m

(e) Visual Range = 1.5m (f) Visual Range = 1.5m

Figure 5.6: Map 2: Area Guards + Boundary Guards
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(a) Visual Range = 0.5m (b) Visual Range = 0.5m

(c) Visual Range = 1m (d) Visual Range = 1m

(e) Visual Range = 1.5m (f) Visual Range = 1.5m

Figure 5.7: Map 2: Boundary Graph + Tour Computed by UBC
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(a) Visual Range = 0.5m (b) Visual Range = 0.5m

(c) Visual Range = 1m (d) Visual Range = 1m

(e) Visual Range = 1.5m (f) Visual Range = 1.5m

Figure 5.8: Map 3: Area Guards + Boundary Guards
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(a) Visual Range = 0.5m (b) Visual Range = 0.5m

(c) Visual Range = 1m (d) Visual Range = 1m

(e) Visual Range = 1.5m (f) Visual Range = 1.5m

Figure 5.9: Map 3: Boundary Graph + Tour Computed by UBC
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(a) Visual Range = 0.5m (b) Visual Range = 0.5m

(c) Visual Range = 1m (d) Visual Range = 1m

(e) Visual Range = 1.5m (f) Visual Range = 1.5m

Figure 5.10: Map 4: Area Guards + Boundary Guards
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(a) Visual Range = 0.5m (b) Visual Range = 0.5m

(c) Visual Range = 1m (d) Visual Range = 1m

(e) Visual Range = 1.5m (f) Visual Range = 1.5m

Figure 5.11: Map 4: Boundary Graph + Tour Computed by UBC
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speed of 0.1m/cycle. Three different visual ranges are considered for the robots:

0.5m (low), 1m (medium), 1.5m (high). Figures 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10,

and 5.11 show the area guards, boundary guards, Visibility Graphs, and the tours

computed by Uninformed Boundary Coverage on the four maps, under various

visual ranges of the robots.

The workspace maps are divided into four disjoint sub-regions. In map 1, there

are structures in four sub-regions of the workspace. In map 2, there are structures

in three of the sub-regions. In map 3, there are structures in two of the sub-regions,

and in map 4, there are structures in just one of the sub-regions.

Four experiments are designed, in each the event distribution varies in the sub-

regions. For each experiment, two low- and high-frequency event models are as-

sumed. In the high-frequency model, the rate at which the events occur is five

times the rate of event occurrence in the low-frequency model. In these exper-

iments, we investigate how robots’ visual range, and communication among the

robots affect the performance of the robot team in the coverage problem, and how

event frequency affects the impact of communication on the robots’ performance.

Below we examine the results obtained on map 1. In the Discussion and Con-

clusions section (Section 5.6), it is shown that the other maps follow a similar trend

to that for map 1. The results are based on the average of 10 runs on each map.

5.5.1 Experiment 1: Uniform Event Occurrence

Low-Frequency Event Model

In this experiment, in each sub-region, at every cycle, an event may occur in one of

the segments of the sub-region with a probability of 0.5. Each event has a weight

of 1.

As shown in Figure 5.12, Uninformed Boundary Coverage collects more re-

wards than Informed Boundary Coverage in all the visual ranges. Increasing the

robots’ visual range also leads to all the algorithms collecting more rewards after a

15000 cycle run of the simulation. Furthermore, there is no significant difference

observed between the communicating and the non-communicating robot teams in

Informed Boundary Coverage.
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(a) Visual Range = 0.5m
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(b) Visual Range = 1m
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(c) Visual Range = 1.5m

Figure 5.12: Experiment 1: Uniform Event Occurrence (Low Freq)
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(a) Visual Range = 0.5m
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(b) Visual Range = 1m
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(c) Visual Range = 1.5m

Figure 5.13: Experiment 1: Uniform Event Occurrence (High Freq)
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(b) Visual Range = 1m
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(c) Visual Range = 1.5m

Figure 5.14: Percentage of Time a Team of 10 Robots Using IBC-WithComm
Spends in Each Sub-region on Experiment 1
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Figure 5.14 shows the communicating robots using the Informed Boundary

Coverage algorithm spend an almost equal amount of time in each sub-region un-

der different visual ranges.

High-Frequency Event Model

In this experiment, in each sub-region, at every cycle, five events may occur in

different segments of the sub-region, each with a probability of 0.5. Each event has

a weight of 1.

As shown in Figure 5.13, Uninformed Boundary Coverage collects more re-

wards than Informed Boundary Coverage in low and medium visual ranges, how-

ever as the visual range increases, the difference between the two algorithms de-

clines, and even in the high visual range of 1.5m, the communicating version of In-

formed Boundary Coverage outperforms Uninformed Boundary Coverage. More-

over, communication among the robots affects the performance of the Informed

Boundary Coverage algorithm, specially in medium and high visual ranges, as the

communicating robot team outperforms the non-communicating robot team in col-

lecting the rewards.

The overall pattern of time the communicating robots using Informed Boundary

Coverage spend in each sub-region is similar to the low-frequency event model

shown in Figure 5.14.

5.5.2 Experiment 2: Non-uniform Event Occurrence

Low-Frequency Event Model

In this experiment, no events occur in sub-region 1. In sub-region 2, at every cycle,

an event may occur in a segment with a probability of 0.3. In sub-region 3, at

every cycle, an event may occur in a segment with a probability of 0.6, and in sub-

region 4, an event may occur in a segment with a probability of 0.9. Each event in

sub-regions 2, 3, and 4 is weighted 1.

As shown in Figure 5.15, Uninformed Boundary Coverage outperforms In-

formed Boundary Coverage in the low visual range of 0.5m, but in the medium

and high visual ranges of 1m and 1.5m, Informed Boundary Coverage shows a
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(b) Visual Range = 1m
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(c) Visual Range = 1.5m

Figure 5.15: Experiment 2: Non-uniform Event Occurrence (Low Freq)
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(a) Visual Range = 0.5m
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(b) Visual Range = 1m
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(c) Visual Range = 1.5m

Figure 5.16: Experiment 2: Non-uniform Event Occurrence (High Freq)
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(a) Visual Range = 0.5m
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(b) Visual Range = 1m
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(c) Visual Range = 1.5m

Figure 5.17: Percentage of Time a Team of 10 Robots Using IBC-WithComm
Spends in Each Sub-region on Experiment 2
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slightly better performance than Uninformed Boundary Coverage. Increasing the

robots’ visual range also leads to all the algorithms collecting more rewards after a

15000 cycle run of the simulation. Furthermore, there is no significant difference

observed between the communicating and the non-communicating robot teams in

Informed Boundary Coverage.

Figure 5.17 also shows that the communicating robots using the Informed

Boundary Coverage algorithm learn to spend more time in sub-region 4 due to the

higher number of events occurring in this area compared to the other sub-regions.

The second area in which the robots spend more time is sub-region 3, and finally

are sub-regions 2 and 1 subsequently.

High-Frequency Event Model

In this experiment, no events occur in sub-region 1. In sub-region 2, at every

cycle, five events may occur in different segments of the sub-region, each with

a probability of 0.3. In sub-region 3, at every cycle, five events may occur, in

different segments of the sub-region, each with a probability of 0.6, and in sub-

region 4, five events may occur in different segments of the sub-region, each with

a probability of 0.9. Each event in sub-regions 2, 3, and 4 is weighted 1.

As shown in Figure 5.16, as opposed to the low-frequency event model, In-

formed Boundary Coverage strongly outperforms Uninformed Boundary Coverage

in all the visual ranges. Moreover, communication among the robots affects the

performance of the Informed Boundary Coverage algorithm, specially in medium

and high visual ranges, as the communicating robot team outperforms the non-

communicating robot team in collecting the rewards.

The overall pattern of time the communicating robots using Informed Boundary

Coverage spend in each sub-region is similar to the low-frequency event model

shown in Figure 5.17.
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5.5.3 Experiment 3: All Events Occur in One Sub-region

Low-Frequency Event Model

In this experiment, in sub-region 1, at every cycle, an event may occur in a segment

of the sub-region, with a probability of 0.9. No events occur in sub-regions 2, 3

and 4. Each event is weighted 1.

As shown in Figure 5.18, Informed Boundary Coverage outperforms Unin-

formed Boundary Coverage in all the visual ranges. Increasing the robots’ visual

range also leads to all the algorithms collecting more rewards after a 15000 cy-

cle run of the simulation. Moreover, communication among the robots affects the

performance of the Informed Boundary Coverage algorithm, specially in medium

and high visual ranges, as the communicating robot team outperforms the non-

communicating robot team in collecting the rewards.

Figure 5.20 also shows that the communicating robots using the Informed

Boundary Coverage algorithm, learn to spend more time in sub-region 1 because

of the higher reward being expected for the robot team compared to the other areas.

On the other hand, the robots’ presence in sub-regions 2, 3 and 4 declines.

High-Frequency Event Model

In this experiment, in sub-region 1, at every cycle, five events may occur in different

segments of the sub-region, each with a probability of 0.9. No events occur in sub-

regions 2, 3 and 4. Each event is weighted 1.

As shown in Figure 5.19, similar to the low-frequency event model, Informed

Boundary Coverage outperforms Uninformed Boundary Coverage in all the vi-

sual ranges. Moreover, communication among the robots affects the performance

of the Informed Boundary Coverage algorithm, specially in medium and high vi-

sual ranges, as the communicating robot team outperforms the non-communicating

robot team in collecting the rewards.

The overall pattern of time the communicating robots using Informed Boundary

Coverage spend in each sub-region is similar to the low-frequency event model

shown in Figure 5.20.
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(a) Visual Range = 0.5m
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(b) Visual Range = 1m
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(c) Visual Range = 1.5m

Figure 5.18: Experiment 3: All Events Occur in One Sub-region (Low Freq)
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(a) Visual Range = 0.5m
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(b) Visual Range = 1m
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(c) Visual Range = 1.5m

Figure 5.19: Experiment 3: All Events Occur in One Sub-region (High Freq)
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(a) Visual Range = 0.5m
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(b) Visual Range = 1m
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(c) Visual Range = 1.5m

Figure 5.20: Percentage of Time a Team of 10 Robots Using IBC-WithComm
Spends in Each Sub-region on Experiment 3
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5.5.4 Experiment 4: Dynamic Event Occurrence

Low-Frequency Event Model

In this experiment, the event distribution changes at some times unknown to the

robots during the simulation run. We assume that during the first 8000 cycles,

the events occur in the workspace according to the low-frequency event model

discussed in Experiment 1 (Uniform Event Occurrence), between cycles 8000−
16000, the events occur according to the low-frequency event model discussed

in Experiment 2 (Non-uniform Event Occurrence), and between cycles 16000−
24000, the events occur according to the low-frequency event model mentioned in

Experiment 3 (All Events Occur in One Sub-region).

As shown in Figure 5.21, in the low viusal range of 0.5m, Uninformed Bound-

ary Coverage outperforms Informed Boundary Coverage, however as the visual

range increases, Informed Boundary Coverage shows a better performance than

Uninformed Boundary Coverage. Increasing the robots’ visual range also leads to

all the algorithms collecting more rewards after a 24000 cycle run of the simulation.

Furthermore, there is no significant difference observed between the communicat-

ing and the non-communicating robot teams in Informed Boundary Coverage. In

this experiment, the robots adapted themselves to the changes in the event distribu-

tion on the boundaries, and updated their policies based on these changes.

Figure 5.23 also shows that in the first 8000 cycles of the simulation, the

communicating robots using Informed Boundary Coverage spend an almost equal

amount of time in each sub-region. In the second 8000 cycles, the robots presence

in sub-region 4 increases and in the third 8000 cycles of the simulation, the robots

spend more time in sub-region 1 and less in sub-region 4.

High-Frequency Event Model

Similar to the low-frequency event model, in this experiment, the event distribution

changes at some times unknown to the robots during the simulation run. During

the first 8000 cycles, the events occur in the workspace according to the high-

frequency event model discussed in Experiment 1 (Uniform Event Occurrence),

between cycles 8000− 16000, the events occur according to the high-frequency
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(a) Visual Range = 0.5m
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(b) Visual Range = 1m
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(c) Visual Range = 1.5m

Figure 5.21: Experiment 4: Dynamic Event Occurrence (Low Freq)
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(a) Visual Range = 0.5m
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(b) Visual Range = 1m
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(c) Visual Range = 1.5m

Figure 5.22: Experiment 4: Dynamic Event Occurrence (High Freq)
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(a) Visual Range = 0.5m
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(b) Visual Range = 1m
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(c) Visual Range = 1.5m

Figure 5.23: Percentage of Time a Team of 10 Robots Using IBC-WithComm
Spends in Each Sub-region on Experiment 4
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Table 5.1: Low-Frequency Event Model - Total Reward Collected by the Team on
Different Maps Based on Different Experiments and Various Visual Ranges

event model discussed in Experiment 2 (Non-uniform Event Occurrence), and be-

tween cycles 16000− 24000, the events occur according to the high-frequency

event model mentioned in Experiment 3 (All Events Occur in One Sub-region).

As shown in Figure 5.22, Informed Boundary Coverage outperforms Unin-

formed Boundary Coverage in all the visual ranges. Moreover, communication

among the robots affects the performance of the Informed Boundary Coverage al-

gorithm, specially in medium and high visual ranges, as the communicating robot

team outperforms the non-communicating robot team in collecting the rewards. In

this experiment, the robots also adapted themselves to the changes in the event

distribution on the boundaries, and updated their policies based on these changes.
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(c) Visual Range = 1.5m

Table 5.2: High-Frequency Event Model - Total Reward Collected by the Team on
Different Maps Based on Different Experiments and Various Visual Ranges

The overall pattern of time the communicating robots using Informed Boundary

Coverage spend in each sub-region is similar to the low-frequency event model

shown in Figure 5.23.

5.6 Discussion and Conclusions
Considering the low and high-frequency event models of the experiments, Ta-

bles 5.1 and 5.2 show the total reward received by the team using Uninformed

Boundary Coverage (UBC) and the two variants (i.e., communicating and non-

communicating robots) of Informed Boundary Coverage (IBC) on the 4 maps of

Figure 5.3 under visual ranges of 0.5m, 1m, and 1.5m. The results on maps 2, 3
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and 4 are consistent with the results discussed for map 1.

Low-frequency event models and low visual ranges result in the better perfor-

mance of Uninformed Boundary Coverage against Informed Boundary Coverage,

and also result in the absence of a significant difference between the communicat-

ing and the non-communicating robots in Informed Boundary Coverage.

As the robots’ visual range decreases, the number of computed states, i.e.

guards, in the target area increases. Accordingly, it becomes harder for Informed

Boundary Coverage to distinguish the more critical states in the target area which

can potentially provide more rewards. The low-frequency event model makes the

situation worse, because now there are more states not conveying any valuable

information regarding the events, and as a result, the communicating robots are un-

able to transmit helpful information about the states. On the other hand, as the event

frequency and the robots’ visual range increase, learning the event distribution on

the boundaries by Informed Boundary Coverage and communication among the

robots becomes more crucial.

In experiment 3 (All Events Occur in One Sub-region), as the robots converge

to sub-region 1 after a while, the number of states the robots have to deal with de-

clines and is limited to the ones in sub-region 1. Hence, even in the low-frequency

event model, Informed Boundary Coverage outperforms Uninformed Boundary

Coverage in all the visual ranges, and the communicating robots outperform the

non-communicating robots in collecting the rewards.
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Chapter 6

Conclusions and Future
Directions

Distributed coverage is a challenging problem in different scenarios for multi-robot

systems. The aim is to deploy a team of robots that will spread out and move around

a target area to perform sensing, monitoring, data collection, search, or distributed

servicing tasks. Single Area Coverage, Repeated Area Coverage, and Repeated

Boundary Coverage are three variations of the coverage problem studied in this

thesis.

6.1 Thesis Contributions
In summary, the contributions of this thesis are as follows.

6.1.1 On Multi-Robot Single Area Coverage

In the first part of the thesis, we addressed the problem of multi-robot single cov-

erage of a target area. The robots have a limited circular visual range. We demon-

strated how a workspace is modeled through locating the static guards, and building

a Constrained Delaunay Triangulation graph on the guards and the nodes of the

workspace. The proposed Cyclic Coverage algorithm guarantees completeness, in

that every accessible point in the target area is visited in a finite time by at least one

of the paths assigned to the robots.
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Cyclic Coverage improves upon the coverage algorithms based on Approxi-

mate Cellular Decomposition, which ignore partially occluded cells or areas close

to the boundaries. It is also an improvement on the algorithms based on Exact

Cellular Decomposition, which do not have a clear policy for moving within the

cells, and may have many redundant motions while moving between the cells in

the workspace.

Cyclic Coverage supports heterogeneous robots having various maximal

speeds, and supports robustness by handling individual robot failure. It also bal-

ances the workload distribution among the robots based on their maximal speeds.

Finally, it was shown that the obtained results on the Coverage Time of the sample

environments are scalable to workspaces of different sizes (i.e., different amounts

of free space), and robots of varied visual ranges.

6.1.2 On Multi-Robot Repeated Area Coverage

In the second part of the thesis, we tackled the problem of multi-robot repeated

coverage of a target area. The robots have a limited circular visual range. The

Reduced-Vis and the Reduced-CDT representations of the workspace were devel-

oped based on the Visibility Graph and the Constrained Delaunay Triangulation

built on the workspace. Three distributed Cluster-based algorithms were intro-

duced for the problem, namely, the Uninformed Clustering Coverage, the Edge-

based Clustering Coverage, and the Node-based Clustering Coverage algorithms,

differing as to how they partition the Reduced Graph among the robots. In order

to build a tour on each partition of the clustered Reduced Graph, two tour building

algorithms were proposed, namely, the Double-Minimum Spanning Tree, and the

Chained Lin-Kernighan algorithms.

A comprehensive set of performance metrics were defined including: Total

Path Length (TPL), Total Average Visiting Period (TAVP), Total Worst Visiting Pe-

riod (TWVP), and the Balance in Workload Distribution (BWD). Cyclic Coverage,

used as a benchmark to compare the algorithms, produces optimal or near-optimal

solutions for the single-robot case, in the VG or the CDT graph built on the set of

guards computed on the workspace, and under TPL and TWVP; however, Cyclic

Coverage is not always the best solution when extending the problem to multi-
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robot scenarios.

Given that it is not possible to develop polynomial approximation algorithms,

when optimizing each of the metrics mentioned above, and the fact that some of

these metrics mutually conflict in the coverage problem, we conducted an extensive

experimental analysis to evaluate the performance of the algorithms. In summary:

• Under all the optimization criteria, the coverage algorithms show similar

performance under the two graph representation algorithms, VG and CDT.

• Under TPL, TWVP, and BWD, all the Cluster-based algorithms perform bet-

ter under CLK than Double-MST.

• Under TAVP, all the Cluster-based algorithms perform better under Double-

MST than CLK.

• Under TPL, in all the tested visual ranges for the robots, at least one of

the Cluster-based algorithms (i.e., Uninformed Clustering Coverage) out-

performs Cyclic Coverage, and as the visual range of the robots increases,

there are more Cluster-based algorithms dominating Cyclic Coverage, espe-

cially in the scenarios in which more robots are involved.

• Under TAVP, Node-based Clustering Coverage and Edge-based Clustering

Coverage are the best options when working with robots having medium

and large visual ranges, and Cyclic Coverage is the choice of the coverage

mission for robots with small visual ranges.

• Under TWVP, Cyclic Coverage dominates the Cluster-based algorithms in

all the tested visual ranges for the robots.

• Under BWD, for small visual ranges, Node-based Clustering Coverage is the

best choice for balancing the workload distribution among the robots; how-

ever, with the increase of the visual range, Edge-based Clustering Coverage

dominates the Node-based Clustering Coverage algorithm for maximizing

the BWD.
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The results can be used as a framework for choosing an appropriate combina-

tion of repeated coverage algorithm, environment representation, and the robots’

visual range based on the particular workspace and the metric to be optimized.

6.1.3 On Multi-Robot Repeated Boundary Coverage

In the third part of the thesis, we focused on the problem of multi-robot repeated

coverage of the boundaries of a target area and the structures inside it. The robots

have a limited circular visual range and line-of-sight communication is assumed

among the robots. Events may occur at any position on the boundaries, and the

robots are not a priori aware of the event distribution. The goal is to maximize the

total detection reward of the events. The reward a robot receives for detecting an

event depends on how early the event is detected.

To this end, the Boundary Graph representation was developed to model the

workspace, and the Informed Boundary Coverage algorithm was presented, in

which each robot autonomously learns the event distribution on the boundaries.

Based on the policy being learned, each robot then plans in a decentralized man-

ner to select the best path in the target area to visit the most promising parts of

the boundary. The performance of the learning algorithm was compared with a

heuristic algorithm for the Traveling Salesman Problem (i.e., Uninformed Bound-

ary Coverage), on the basis of the total reward collected by the team during a finite

period of time.

Four experiments were designed, in each the event distribution varies in the

sub-regions of the selected maps: 1) Uniform Event Occurrence, 2) Non-uniform

Event Occurrence, 3) All Events Occur in One Sub-region, and 4) Dynamic Event

Occurrence. For each experiment, two low- and high-frequency event models were

assumed. In the high-frequency model, the rate at which the events occur is five

times the rate of event occurrence in the low-frequency model. In these experi-

ments, we investigated how robots’ visual range, and communication among the

robots affect the performance of the robot team in the coverage mission, and how

event frequency affects the impact of communication on the robots’ performance.

In summary, low-frequency event models and low visual ranges result in the

better performance of Uninformed Boundary Coverage against Informed Bound-
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ary Coverage, and also result in the absence of a significant difference between the

communicating and the non-communicating robots in Informed Boundary Cover-

age.

As the robots’ visual range decreases, the number of computed states, i.e.

guards, in the target area increases. Accordingly, it becomes harder for Informed

Boundary Coverage to distinguish the more critical states in the target area which

can potentially provide more rewards. The low-frequency event model makes the

situation worse, because now there are more states not conveying any valuable in-

formation regarding the events, and as a result the communicating robots are unable

to transmit helpful information about the states. On the other hand, as the event fre-

quency and the robots’ visual range increase, learning the event distribution on the

boundaries by Informed Boundary Coverage and communication among the robots

becomes more crucial.

In experiment 3 (All Events Occur in One Sub-region), as the robots converge

to sub-region 1 after a while, the number of states the robots have to deal with de-

clines and is limited to the ones in sub-region 1. Hence, even in the low-frequency

event model, Informed Boundary Coverage outperforms Uninformed Boundary

Coverage in all the visual ranges, and the communicating robots outperform the

non-communicating robots in collecting the rewards.

As far as we are aware, there is no work using the boundary coverage frame-

work studied in this thesis. In our work, instead of patrolling a single open or

closed polyline, the robots patrol the inner boundaries of a full environment and

the structures inside it, and it is assumed that different parts of the boundary may

have different priorities depending on the probability distribution of the events.

Also, our robots can detect multiple events/intruders simultaneously, as opposed to

single intruder scenarios studied in previous work.

6.2 Future Directions
There are many challenging possible future research directions for the work re-

ported here:

• Non-uniform Environments: The maximal speed allowed for the robots

may vary in different parts of the workspace.
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• Non-polygonal Environments: In this thesis, we addressed the coverage

problem in polygonal environments containing polygonal obstacles. Future

work could be to extend the work to non-polygonal or free-form workspaces

and obstacles. Since our proposed coverage algorithms are based on the

guards computed in the target area, therefore as long as we can compute the

required guards in free-form workspaces, the coverage algorithms will be

valid in those areas as well.

• Heterogeneity: Heterogeneity can be defined in various aspects and con-

texts, such as different movement capabilities, robots having different visual

ranges, or different task/event handling abilities.

• Coalition Formation: Some tasks/events may require multiple robots to be

handled.

• Learning and Uncertainty: Noisy robot sensors, action uncertainty, un-

known obstacles, and the like, can lead to different challenging learning

problems. For noisy sensors, the accuracy of the area information, e.g.

events, realized by a robot could vary with the distance of that part of the

area from the robot.

• Dynamic Environments: The robot team should have the ability to change

its policy over time in response to a changing environment with dynamic ob-

stacles, either to improve performance or to prevent unnecessary degradation

in performance.

• Coverage in 3D Spaces: Extending the work from 2D planar coverage to

coverage of non-planar workspaces in a 3D space is a challenging future

direction. Distributed coverage of non-planar workspaces is vital in a broad

class of real-world applications in rough terrains.

• Deployment on Real Robots: Performing the experiments on real robots

in real-world scenarios is an obvious extension of this thesis. The physical

limitations of the robots in the real world is a critical issue as well.
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