
Complete and Robust Cooperative Robot Area
Coverage with Limited Range

Pooyan Fazli, Alireza Davoodi, Philippe Pasquier, and Alan K. Mackworth

Abstract— We address the problem of multi-robot area cov-
erage and present a new approach in the case where the
map of the area and its static obstacles are known and the
robots have a limited visibility range. The proposed method
starts by locating a set of static guards on the map of the
target area and then builds a graph called Reduced-CDT, a new
environment representation method based on the Constrained
Delaunay Triangulation (CDT). Multi-Prim’s is used to decompose
the graph into a forest of partial spanning trees (PSTs). Each
PST is then modified through a mechanism called Constrained
Spanning Tour (CST) to build a cycle which is then assigned to
an individual robot. Subsequently, robots start navigating the
cycles and consequently cover the whole area. We show that
the proposed approach is complete and robust with respect to
robot failure.

I. INTRODUCTION
Multi-robot area coverage is receiving considerable atten-

tion due to its applicability in different scenarios such as
search and rescue operations, planetary exploration, intruder
detection, environment monitoring, floor cleaning and so on.
In this task a team of robots is cooperatively trying to observe
or sweep an entire area, possibly containing obstacles, with
their sensors or actuators. The goal is to build an efficient
path for each robot which jointly ensure that every single
point in the environment can be seen or swept by at least
one of the robots while performing the task. If there is a need
to detect some resources in the environment, area coverage
guarantees finding all the resources in the target area.

There is confusion in the literature regarding the terms
Coverage and Exploration. To clarify the problem definition,
we note that in exploration, we have an unknown environ-
ment and a team of robots is trying to build a map of the
area together [22], [4]. In a coverage problem, the map of
the environment may be known or unknown and the goal
of the team is to jointly observe/sweep the whole area with
their sensors or physical actuators. Building a map of the
environment is not the ultimate aim of the coverage mission.

Another similar class of problems is Boundary Coverage
in which, the aim is to inspect all of the obstacles’ boundaries
by a team of robots instead of complete coverage of the area
[21].

Several research communities including robotics/agents
[10], [8], [2], sensor networks [3], [14] and computational
geometry [5] work on different variations of the area cover-
age problem. In computational geometry, this problem stems
from the Art Gallery problem [17] and its variation for

P. Fazli and A. K. Mackworth are with the Department of Computer Sci-
ence, University of British Columbia, Vancouver, B.C., Canada {pooyanf,
mack@cs.ubc.ca}

A. Davoodi and P. Pasquier are with the School of Interacive Arts and
Technology, Simon Fraser University, Vancouver, B.C., Canada {ada48,
pasquier@sfu.ca}

mobile guards called the Watchman Route problem [7], [18].
In the Art Gallery problem, the goal is to find a minimum
number of static guards (control points) which jointly can
cover a work space under different restrictions. On the other
hand, in the Watchman Route problem the objective is to
compute routes watchmen should take to guard an entire area
given only the map of the environment. Most research done
on the above problem definitions deal with simple polygons
without obstacles, unconstrained guard visibility, and single
watchman scenarios.

From a robotics point of view, in a taxonomy presented
by Choset [8], the proposed approaches for area coverage
are divided into offline methods, in which the map of the
environment is known, and online methods, in which the map
of the environment is unknown. Choset [8] further divides
the approaches for area coverage based on the methods they
employ for decomposing the area: Exact Cellular Decompo-
sition, and Approximate Cellular Decomposition.

Previous research on multi-robot area coverage is mostly
focused on approaches using the Approximate Cellular De-
composition (e.g. grid-based methods) [1], [23], [12]. These
methods have limitations since they do not consider the struc-
ture of the environment and as a result are unable to handle
partially occluded cells or cover areas close to the boundaries
in continuous spaces. In contrast, methods based on the Exact
Cellular Decomposition (e.g. graph-based methods) which
employ structures such as the reeb graph for environment
representation do not suffer those restrictions [20]. However,
while traversing the graph guarantees covering the whole
environment in continuous spaces, it might include many
redundant movements.

A. Contributions

This paper addresses the problems mentioned above re-
garding dealing with the structure of the environments and
also robots’ limitations in the real world in a coverage sce-
nario. First, the proposed approach guarantees completeness,
meaning every accessible point in the environment will be
visited in a finite time. This alleviates issues raised by meth-
ods based on Approximate Cellular Decomposition ignoring
partially occluded cells or areas close to the boundaries.
Second, it minimizes redundant movements of the robots
in the workspace. Third, it supports robustness by handling
individual robot failure and finally the proposed approach
is designed in a way to overcome the restrictive constraint
imposed by the robots’ limited visibility range as well.

II. MULTI-ROBOT AREA COVERAGE

We present a cooperative approach to covering a known
environment using an arbitrary number of robots. For this

Fig. 1. From Left to Right: (a) Sample Environment (b) Trapezoidal Decomposition (c) Computed Guards

purpose, we make the following assumptions.

Assumption 1. The environment is a known, 2D, simple
polygon containing static polygonal obstacles.

Assumption 2. The robots are homogeneous, have the same
speed, and can move in all directions.

Assumption 3. The robots are assumed to have 360 ◦ field
of view and a predefined circular limit of visibility range.

Assumption 4. The vision sensors are ideal without noise.

Our coverage method is composed of four main steps:

1) First, it determines the locations of static guards re-
quired to visually cover a given 2D environment,
considering the limited visibility range of the robots’
cameras.

2) Then, it builds the Reduced-CDT, a graph-based rep-
resentation of the environment.

3) An algorithm called Multi-Prim’s is introduced to
partition the graph and construct a forest consisting of
as many partial spanning trees as there are covering
robots.

4) Afterward, a new method called Constrained Spanning
Tour is used to build a cycle on each resultant tree of
the forest, and finally, each cycle is allocated to an
individual robot in the team.

A. Locating Guards with Limited Visibility

In our problem definition, we assume robots equipped with
panoramic cameras with a 360◦ field of view. However, the
cameras’ visibility range is limited. The proposed approach
initially locates a set of guards required to visually cover an
entire area [13]. These static guards are control points that
can jointly cover the whole environment while satisfying the
visibility constraint of the robots. To this end, the algorithm
decomposes the initial target area, a 2D, simple, polygon
with static obstacles, into a collection of convex polygons
(Trapezoidal Decomposition). Then, a divide and conquer
method is applied to successively divide each of the resulting
convex polygons into smaller convex sub-polygons until each
of them can be visually covered by one guard. Figure 1
illustrates sequential steps of computing the static guards for
a sample environment in Player/Stage [11].

B. Environment Representation

In this paper, we investigate a graph structure for envi-
ronment representation based on the Constrained Delaunay
Triangulation (CDT). Given the set of obstacles and their
corresponding endpoints, the algorithm first uses the method
explained in section II-A to create the set of static guards.
The CDT is then built on the obstacles and the computed
guards.

Then, we introduce a mechanism to reduce the graph so
as to minimize the distance each robot has to traverse which
consequently improves the efficiency of the whole approach.

1) Constrained Delaunay Triangulation: The Delaunay
Triangulation of a set of points in the Euclidean plane
is a triangulation such that circumcircle of any triangle
in the triangulation does not contain vertices other than
the three that define it [15]. The Delaunay Triangulation
corresponds to the dual graph of the Voronoi tessellation.
Figure 2(a) illustrates the Delaunay Triangulation on the
sample environment.

The Constrained Delaunay Triangulation (CDT) is a vari-
ant of the standard Delaunay Triangulation in which a set
of pre-specified edges (in our case, edges of the obstacles)
must lie in the triangulation [6]. A Constrained Delaunay
Triangulation (CDT) is not truly a Delaunay Triangulation.
Some of its triangles might not be Delaunay, but they are all
constrained Delaunay. Figure 2(b) illustrates the Constrained
Delaunay Triangulation on the sample environment.

2) Graph Reduction: The aim of graph reduction is to
improve efficiency by minimizing the average or total time
taken for the robots to traverse the graph. Algorithm 1
describes the steps of the construction of a reduced graph
(Reduced-CDT) on a given environment. The input of the
algorithm is the CDT made on the map of the area.

The method starts by using the Floyd-Warshall algorithm
to find the set MD =

{
(ci j,vi,v j)|vi,v j ∈Vcdt

}
of minimum

distances, ci j, and the set SP =
{
(ri j,vi,v j)|vi,v j ∈Vcdt

}
of

shortest paths, ri j, between any pair of vertices vi and v j of
the input graph (line 2).

The minimum value of all the minimum distances in MD
is then selected provided that both the endpoints of the
corresponding shortest path in SP belong to the set of static
guards, SG, computed in section II-A (line 3). The chosen
path (line 4), including all its vertices and edges, forms the
initial component called Connected Component, Gcc (line 5).

Fig. 2. From Left to Right: (a) Delaunay Triangulation (b) Constrained Delaunay Triangulation (c) Reduced-CDT

Algorithm 1 Graph Reduction
Input:
Graph Gcdt(Vcdt ,Ecdt), where Vcdt = SG

⋃
P // CDT

SG = {g1,g2,,gm} // Set of Static Guards
P = {p1, p2,, pn} // Endpoints of Obstacles
Ouput:
Graph Gr cdt(Vr cdt ,Er cdt) where Vr cdt = SG

⋃
P̃, P̃⊂ P

1: set Vr cdt = φ and Er cdt = φ

2: (MD,SP) = FloydWarshall(Gcdt)
3: (i, j) = argmin

(i, j)
{ci j|(ci j,vi,v j) ∈MD and vi,v j ∈ SG}

4: ri j = GetT heCorrespondingShortestPath(i, j)
5: Gcc(Vcc,Ecc) = InitialConnectedComponent(ri j)
6: while ¬all the guards added do
7: g = FindT heClosestGuardTo(Gcc)
8: Expand(Gcc,g)
9: end while

10: return Gr cdt(Vr cdt ,Er cdt), where Vr cdt = Vcc and
Er cdt = Ecc

Next, among all the guards that have not yet been added
to the component, the algorithm finds the closest guard to
the current component (line 7), merging the corresponding
shortest path with it (line 8). Following the same process,
the algorithm keeps expanding the Connected Component
until there are no more guards to be added to the current
component (line 6). The resultant Connected Component is
the final reduced graph Gr−cdt (line 10).

Figure 2(c) illustrates the Reduced-CDT computed on the
CDT from figure 2(b).

C. Multi-Prim’s Algorithm

The Multi-Prim’s algorithm [9] extends the Prim’s al-
gorithm [19] used to build the minimum spanning tree of
a weighted graph. This extension is motivated by the fact
that multiple robots are involved in the environment to
accomplish the task. The proposed approach has a weighted
graph (i.e. Reduced-CDT) as an input and outputs a forest of
|R| partial spanning trees, where |R| is the number of robots
in the team. These trees are created incrementally from the
initial location of the robots.

The Multi-Prim’s algorithm starts by determining the
starting points. A corresponding starting point for a robot

is a visible reduced graph vertex closest to the robot. In
some situations, the algorithm might lead to the same starting
points for different robots.

Having determined all the starting points, the Multi-Prim’s
algorithm initiates as many trees as there are covering robots.
At this stage, each tree only contains two vertices, (i.e.
the robot and the corresponding starting point), and the
edge between them. Subsequently, robots try to sequentially
expand their own trees (one guard at a time) until all the
guards of the reduced graph are visited at least once. The
guards are visited in a way that satisfies the following
constraints:

1) Find the nearest immediate (that is, ignoring the end-
points of the obstacles) guard, add it and the corre-
sponding path to the tree provided that it does not
create a cycle. In case of a tie, choose the guard which
maximizes the sum of the distances from the guards
most recently selected by the other robots.

2) Do not add a guard which has already been visited
by any other robot, unless there is no other unvisited
immediate guard.

3) When all the guards of the graph are visited by at least
one robot, remove as many as possible of common
vertices shared by the trees of the robots. To this
end, by starting from the most recently selected guard,
discard the guards and their corresponding paths from
the robot’s tree if they had been visited sooner by any
other robot. Continue this process until it reaches the
most recently selected guard which hasn’t been visited
sooner by other robots.

Fig. 3. Multi-Prim’s Algorithm

Fig. 4. From Left to Right: (a) A Sample Tree (b) Double-MST (c) Revised-DMST (d) CST

Figure 3 illustrates the result of decomposing the reduced
graph among three robots on the sample environment.

D. Constrained Spanning Tour

The next step is to construct a cycle on each partial
spanning tree resulting from the Multi-Prim’s algorithm.
To this end, we introduce an algorithm called Constrained
Spanning Tour (CST) which is an improved variant of the
Double-Minimum Spanning Tree (Double-MST) algorithm.
Double-MST takes a tree as an input and returns a cycle
whose length is twice the length of the tree. In this algorithm,
every edge of the tree is visited twice. Figure 4(a) and 4(b)
illustrate running the algorithm on a sample tree. A revision
can be made to the algorithm in order to form a cycle less
than or equal in size to the one generated by the Double-MST.
Starting from an arbitrary initial point, as indicated by the
arrow in Figure 4(c), the revised algorithm called Revised-
DMST traverses the vertices in the same way as the Double-
MST algorithm does, but whenever it reaches a vertex visited
before, it discards it, proceeding to the next vertex along the
cycle to find an unvisited one, making a shortcut edge to it.
This process continues until it returns back to the starting
point. Figure 4(c) illustrates the result of the algorithm.

However, because of the obstacles in the environment,
our coverage mechanism can not apply the Revised-DMST
algorithm. In order to avoid the obstacles, we introduce
another algorithm called Constrained Spanning Tour (CST).
This algorithm traverses the vertices of the tree similar to
the way the Revised-DMST does, with the difference that it
uses edges of the original graph (CDT) as shortcuts.

The CST algorithm uses backtracking to find out the best
shortcut. If the shortcut does not belong to the original graph,
the next best shortcut will be considered. For instance, in
Figure 4(d), suppose there is no edge connecting the vertices
A and B in the original graph. Therefore, the CST algorithm
can not add the shortcut edge AB to the path; instead, it
selects the shortcut AC, assuming there is such an edge in
the CDT graph. It keeps following the same way to find the
best shortcut. CST traverses the tree to return to the initial
point. In the worst case the result will be the same as the
result of the Double-MST algorithm.

Property 1. Assuming LenA(T) is the length of the cycle
returned by an algorithm A over tree T , we have the
following property:

LenRevised−DMST (T)≤ LenCST (T)≤ LenDouble−MST (T)

Finally, the robots start navigating the cycles which con-
sequently results in full coverage of the target area. CST has

the benefit that it returns the robots to their initial locations,
facilitating tasks like garbage collection and storage.

III. FAULT-TOLERANT MULTI-ROBOT AREA
COVERAGE

Robot failure during execution can jeopardize the com-
pletion of the area coverage task. By failure, we mean that
the robot is not capable of operating and moving anymore,
and by fault tolerance, we refer to the ability of the team to
respond to individual robot failures that may occur at any
time during the mission. Our approach addresses the issue
through the concept of Supportive trees.

Definition 1. A bridge between two trees of a forest is either
a vertex or an edge in common or an edge in the original
reduced graph with endpoints each located on one of the
trees.

Definition 2. Two trees of a graph are Mutually Supportive
if there is at least a bridge connecting those two trees.

The algorithm uses the forest, built on the original reduced
graph by Multi-Prim’s algorithm, to find all pairs of Mutually
Supportive trees.

Lemma 1. There is at least one Supportive tree for each
tree of the forest

Proof. (Proof by Contradiction) Assume that there is no
supportive tree for a tree of the forest, meaning that there is
no bridge between this tree and any other trees of the forest.
This assumption implies that the tree is disconnected within
the original reduced graph, which is in contradiction with
the graph’s connectivity.

Definition 3. Robots working on two Mutually Supportive
trees are also Mutually Supportive.

Corollary 1. Each robot has at least one Supportive robot.

Fig. 5. Fault-Tolerant Multi-Robot Area Coverage

Algorithm 2 Fault-Tolerant Multi-Robot Area Coverage
Input:

A forest of n trees, T = {T1,T2, . . . ,Tn} where
n⋃

i=1
VTi =V

in which V is the set of guards of the reduced graph and
VTi is the set of guards of the tree Ti
TF = {TF1 ,TF2 , . . . ,TFm} // Corresponding Trees of the
Failed Robots
Output:
A forest of n−m trees, T ′ =

{
T ′1 ,T

′
2 , . . . ,T

′
n−m
}

where
n−m⋃
i=1

VT ′i
=V in which V is the set of guards of the reduced

graph and VT ′i
is the set of guards of the tree T ′i

1: set ST = φ // Supportive Trees
2: for all TFi ∈ TF do
3: for all Tj ∈ T do
4: if TFi and Tj are Mutually Supportive and Tj /∈ TF

then
5: ST = ST

⋃
Tj

6: end if
7: end for
8: end for
9: while ¬all the guards o f the graph Gr cdt visited do

10: for all T ′i ∈ ST do
11: find v ∈V which is the nearest immediate guard to

T ′i in Gr cdt and ¬visited
12: if T here is no such a vertex v then
13: find v ∈V which is the nearest immediate guard

to T ′i in Gr cdt
14: end if
15: T ′i .push(v)
16: end for
17: end while
18: for all T ′i ∈ ST do
19: while T ′i .top() visited sooner by any other robot do
20: T ′i .pop()
21: end while
22: end for
23: return T ′

When a robot fails, all the vertices of its assigned tree are
released. Then all of its Supportive robots expand their trees
through the Multi-Prim’s algorithm to possess the released
vertices and to cover the whole environment again.

Theorem 1. (Robustness) The approach is robust even if
|R| − 1 of the robots fail, or in other words, as long as at
least one robot is operating correctly (|R| is the number of
robots).

Proof. (Proof by Induction) We want to show that the
statement is true for all number of robots i from 1 to |R|−1,
meaning that if i robots fail, the remaining robots will still
be able to cover the whole area.

Induction Base: Let i = 1. According to Corollary 1,
each robot has at least one Supportive robot. Therefore, if
a robot fails, then all of its supportive robots expand their
trees to possess all the released vertices of the failed robot

and consequently cover the whole area again.
Induction Step: Assume if i = k robots fail during the

mission, the remaining robots can still cover the whole
environment. It must then be shown for i = k+1 robots.
|R|− k robots can cover the whole environment, meaning

that there are |R| − k trees within the environment which
by navigating around them (CSTs), the robots can together
cover the whole area. According to Lemma 1, there is at least
one Supportive tree for each tree of the forest. Therefore,
if one more robot fails during the mission, its Supportive
robots expand their trees to include all the released vertices
of the failed robot and consequently cover the whole area
again.

Figure 5 illustrates the map of the environment after robot
(a) fails.

IV. ANALYSIS OF THE ALGORITHM
The variation of the problem with just one robot operating

in an environment without obstacles has an exact polynomial
time solution. But, extending the problem to support obsta-
cles in the environment or allowing multiple robots make the
corresponding decision problems hard. The hardness proofs
use simple reductions from the TSP [7] and partition [16]
problems, respectively.

A. Overall Complexity
In summary, the complexity order of the different stages

of the proposed algorithm is shown in Table I:

TABLE I
COMPLEXITY OF DIFFERENT STAGES OF THE COVERAGE ALGORITHM

Stages of the Algorithm Time Complexity
Locating Guards O(n2 logn2)

Environment Representation O((n+m)3)
Multi-Prim’s Algorithm O(|R|(n′+m)log(n′+m))

Constrained Spanning Tour O(|R|(n′+m)2)

n: Number of vertices of the obstacles
n′: Number of vertices of the obstacles in the reduced graph
m: Number of guards
|R|: Number of robots

Since the complexity order of the whole coverage mecha-
nism is dominated by the Environment Representation part,
the entire approach is a polynomial time algorithm of com-
plexity of O((n+m)3)

B. Other Properties
Using multiple robots may reduce the coverage time by

dividing the task among the robots. The coverage time of
the area is determined by the robot traversing the longest
distance in the environment. We define the running time of
an area coverage task as the maximum of the distances each
robot has to traverse in the area, maxr∈R(dist(r)), where
dist(r) is the distance traversed by robot r.

Property 2. (Worst Case Running Time) The worst case
running time of the proposed approach is 2×weight(G),
where G is the Reduced-CDT graph and weight(G) is the
sum of the length of all edges in G.

Proof. In the worst case, the coverage time for a team of
|R| robots is equal to that of a single robot. The worst
case scenario happens when all the robots start from initial
locations very close to each other and the environment
(e.g. a narrow corridor) can be represented by a small and
sparse graph (e.g. a chain of vertices, resembling a straight
line).

Theorem 2. (Completeness) The proposed approach covers
every accessible point in the environment in a finite time.

Proof. As mentioned earlier, the computed static guards can
together inspect the whole target area considering the limited
visibility constraint of the robots’ cameras. In the Multi-
Prim’s step, the robots divide the reduced graph created on
the static guards among themselves so that the union of the
generated trees includes all the guards. Hence, traversing the
cycles (CSTs) created on the trees assigned to the robots leads
to visiting all the static guards in the area and therefore to
full inspection of the environment.

V. CONCLUSION AND FUTURE WORK

This paper investigates the multi-robot area coverage prob-
lem and presents a new approach for covering a known
polygonal area cluttered with static obstacles. The robots are
assumed to have a limited visibility range. The proposed
algorithm is guaranteed to be complete and robust provided
that at least one robot operates correctly. Also, this approach
can be used in other applications such as border inspection
instead of area coverage by only considering the convex
regions having common edges with the border.

There are numerous challenging future research directions
for this problem. Some are as follows:

1) Heterogeneity: In a coverage scenario, heterogeneity
can be defined in different aspects, such as different
movement or sensing capabilities of the robots, and so
on.

2) Open Systems: The current approach is robust to robot
failure during the mission but what if a new robot joins
the team in the middle of the execution?

3) Priority: In some applications, parts of the target area
should be visited or covered sooner than others due to
different priorities.

4) Robustness: In this paper, we investigate robot failure.
There are other robustness criteria that need to be dealt
with in the real world, such as robot action failure,
communication failure, message loss, and such.

5) Communication: The robots could have a limited
range of communication, meaning a message sent by
a robot is transmitted only to robots within a certain
distance from that robot.

6) Dynamic Environments: The robot team should have
the ability to change its behavior over time in response
to a dynamic environment (e.g. dynamic obstacles
or an environment changing in shape or size), to
either improve performance or to prevent unnecessary
degradation in performance.

REFERENCES

[1] N. Agmon, N. Hazon, and G. A. Kaminka, “The giving tree: con-
structing trees for efficient offline and online multi-robot coverage,”
Annals of Mathematics and Artificial Intelligence, vol. 52, no. 2-4, pp.
143–168, 2008.

[2] M. Ahmadi and P. Stone, “A multi-robot system for continuous area
sweeping tasks,” in Proceedings of the IEEE International Conference
on Robotics and Automation, ICRA 2006, May 2006, pp. 1724–1729.

[3] I. F. Akyildiz, S. Weilian, Y. Sankarasubramaniam, and E. Cayirci, “A
survey on sensor networks,” IEEE Communications Magazine, vol. 40,
no. 8, pp. 102–114, 2002.

[4] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun, “Collab-
orative multi-robot exploration,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2000, vol. 1,
2000, pp. 476–481.

[5] S. Carlsson, B. J. Nilsson, and S. C. Ntafos, “Optimum guard covers
and m-watchmen routes for restricted polygons,” International Journal
of Computational Geometry and Applications, vol. 3, no. 1, pp. 85–
105, 1993.

[6] L. P. Chew, “Constrained delaunay triangulations,” in Proceedings of
the Symposium on Computational Geometry, 1987, pp. 215–222.

[7] W. Chin and S. Ntafos, “Optimum watchman routes,” in Proceedings
of the Second Annual Symposium on Computational Geometry, SCG
’86. New York, NY, USA: ACM, 1986, pp. 24–33.

[8] H. Choset, “Coverage for robotics – a survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, no. 1-4, pp. 113–
126, 2001.

[9] A. Davoodi, P. Fazli, P. Pasquier, and A. K. Mackworth, “On multi-
robot area coverage,” in Proceedings of the 7th Japan Conference on
Computational Geometry and Graphs, JCCGG 2009, 2009, pp. 75–76.

[10] P. Fazli, A. Davoodi, P. Pasquier, and A. K. Mackworth, “Multi-
robot area coverage with limited visibility,” in Proceedings of The
9th International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2010, 2010.

[11] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The Player/Stage
project: Tools for multi-robot and distributed sensor systems,” in Pro-
ceedings of the 11th International Conference on Advanced Robotics,
2003, pp. 317–323.

[12] N. Hazon and G. Kaminka, “Redundancy, efficiency and robustness
in multi-robot coverage,” in Proceedings of the IEEE International
Conference on Robotics and Automation, ICRA 2005, April 2005, pp.
735–741.

[13] G. D. Kazazakis and A. A. Argyros, “Fast positioning of limited
visibility guards for inspection of 2d workspaces,” in Proceedings of
the 2002 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Oct. 2002, pp. 2843–2848.

[14] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg, “Near-optimal
sensor placements: maximizing information while minimizing com-
munication cost,” in Proceedings of the 5th International Conference
on Information Processing In Sensor Networks, IPSN 2006, 2006, pp.
2–10.

[15] D. T. Lee and B. J. Schachter, “Two algorithms for constructing a de-
launay triangulation,” International Journal of Computer Information
Science, vol. 9, no. 3, pp. 219–242, 1980.

[16] J. Mitchell and E. Wynters, “Watchman routes for multiple guards,”
in Proceedings of the 3rd Canadian Conference on Computational
Geometry, 1991, pp. 126–129.

[17] J. O’Rourke, Art gallery theorems and algorithms. New York, NY,
USA: Oxford University Press, 1987.

[18] E. Packer, “Computing multiple watchman routes,” in 7th International
Workshop on Experimental Algorithms, WEA, ser. Lecture Notes in
Computer Science, C. C. McGeoch, Ed., vol. 5038. Springer, 2008,
pp. 114–128.

[19] A. K. Ravindra, T. L. Magnanti, and J. B. Orlin, Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, February 1993.

[20] I. Rekleitis, A. P. New, E. S. Rankin, and H. Choset, “Efficient
boustrophedon multi-robot coverage: an algorithmic approach,” Annals
of Mathematics and Artificial Intelligence, vol. 52, no. 2-4, pp. 109–
142, 2008.

[21] K. Williams and J. Burdick, “Multi-robot boundary coverage with plan
revision,” in Proceedings of the IEEE International Conference on
Robotics and Automation, ICRA 2006, 2006, pp. 1716–1723.

[22] B. Yamauchi, “Frontier-based exploration using multiple robots,” in
Proceedings of the Second International Conference on Autonomous
Agents, AGENTS 1998, 1998, pp. 47–53.

[23] X. Zheng, S. Jain, S. Koenig, and D. Kempe, “Multi-robot forest
coverage,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2005, 2005, pp. 3852–3857.

