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Abstract—We present a novel approach for intention learning
in the context of human navigation. The proposed approach
assumes humans to be motivated to navigate with a set of
imaginary social forces and continuously learns the preferences
of each human to follow these forces. We show the correlation
between the learned preferences and the intentions of the human
subject and study these intentions in the context of human-robot
interaction and human tracking. We conduct experiments both
in simulation and real-world environment to demonstrate the
feasibility of the approach and the benefit of employing it to
track humans.

I. INTRODUCTION

With the recent developments in artificial intelligence and
robotics, robots are increasingly being assigned tasks where
they have to navigate in crowded areas. While humans learn
over the years to understand one another and plan their paths
accordingly, robots still cannot understand human intentions,
forcing them to navigate in an over conservative way in
human-populated environments.

Previous work on robot navigation within crowds mostly
rely on the Social Force Model (SFM) [1] to understand
humans. Luber et al. [2] assume fixed weights for the social
forces based on average human weight and dimensions and
track humans with the corresponding motion model. This
approach might fail in the real world where humans have
different characteristics and might change their intentions over
time.

Ferrer et al. [3] proposed to control a robot with the social
force model to navigate similar to humans by learning the
weight of each force from a dataset on human navigation.
Although learning one weight for each force works for con-
trolling a robot to navigate similar to humans, it might fail
to track multiple humans in the real world where each has
different preferences for these forces.

On the other hand, Vasquez et al. [4] used the social forces
and other human features to learn to navigate directly around
humans using an Inverse Reinforcement Learning framework
[5], without the need to track humans.

Recently, Alahi et al. [6] suggested to use an LSTM-based
neural network to learn to track humans, with the network
learning the connection between one human’s position and
another. While this approach is very promising, it is not
obvious how to extract human intention from the end-to-end
neural network.

In this work, we suggest to learn the intentions of each
human in the scene to follow a moving robot or reach a
fixed target directly from the social force model. The proposed
approach integrates a Kalman Filter with a motion model
based on SFM to track humans in the environment and
learn the aforementioned intentions. Observing the difference

between the predicted and observed human positions, we learn
SFM weights specific to each human. Our experiments show
the advantage of this method in tracking humans as well as
the direct connection between those weights and the intention
of the humans.

II. HUMAN TRACKING AND INTENTION LEARNING

We rely on the Social Force Model [1] to track humans and
learn their intentions. For a human moving to a fixed target
with robots and other humans in the environment, the resultant
social force can be expressed as:

F = α3Frobot + α2Fhuman + α1Fobstacle + α0Ftarget, (1)

where F is the resulting force driving the human, Frobot
is the force pushing the human toward or away from the
robot, Fhuman is the force pushing the human toward or
away from other humans, Fobstacle is the force driving the
human away from obstacles, and Ftarget is the force pushing
the human to the target. In the case where the target is the
actual robot, Ftarget will be included in Frobot. Each of the
forces is exponentially related to the distance between the two
objects enforcing it, with the exception of the last force that is
linearly related to the human speed. αs represent the weight
of each force, and it can be considered as the intention of the
human to consider the corresponding force while navigating.
For example, if the human ignores the robot’s existence
completely, the corresponding α should be zero, if he follows
the robot, it should be positive, while if he runs away from
the robot, the corresponding α should be negative.

Mathematically the forces are represented as follows:

Fk = Ake
(δk−‖dk‖)/Bk

dk

‖dk‖
, (2)

where k is a member of the set O =
{robot, human, obstacle}, Ak, δk, and Bk are fixed
parameters specific to each member of the set, dk is the
distance vector between the human and the corresponding
object in O, and ‖dk‖ is its norm. Ferrer et al. [3] present a
framework to learn Ak, δk, and Bk. On the other hand:

Ftarget = κ(v∗ − v), (3)

where κ is a fixed parameter, v∗ is the desired velocity (which
we assume to be the velocity of the moving target), and v is the
actual human velocity. This force emphasizes the difference
between the desired and actual velocity making it suitable
for a moving target, where the human has to match their
velocity with the target’s. However, this force does not adapt



to the velocity preference of each human when following a
fixed target, where the desired velocity can be considered as
a personal preference. Instead, we model the force to a fixed
target as:

Ftarget = κ
v

‖v‖
(1− cosθ), (4)

where θ is the angle between the human trajectory and the
target direction, and ‖v‖ is the norm of the human velocity v.
This equation emphasizes the difference in direction between
the actual trajectory and the one leading to the target, which
helps the robot learn the intention of the human to reach the
corresponding location.

As such, for a set of learned weights the social force can
be calculated based on the observed environment, and we can
model the human motion as presented in [2]:[

xt

vt

]
=

[
xt−1 + vt−1∆t + F

2 ∆t2

vt−1 + F∆t

]
, (5)

where xi is the position of the human, vi is the velocity
of the human at time step i, and ∆t is the time difference
between the two time frames. The motion model of each
human can be used to track the human using a Kalman Filter
which predicts their future position after each observation. In
addition, our framework learns the underlying weights that
could lead to the observed position and reduce its error with
the predicted. As such, the tracking of each human starts
with an approximate value of each α and updates them for
each human as we receive more observations. Specifically,
we update the parameters to reduce the difference between
the predicted and the observed human location. This can be
achieved as the observed location presents the real social force
driving the human, while the predicted position presents the
estimated one. As such, the difference between the two is
linearly related to the error in the estimate of the social force
model. Mathematically, we note the difference between the
two positions as diff(F ) and learn each α as :

αi,t = αi,t−1 + diff(F ).fi.γ, (6)

where fi is the interaction force corresponding to αi as
presented in Eq. (1), and γ is the learning rate.

In this work, we are mainly concerned with the two inter-
action forces that show the intention of the human to interact
with the robot and the intention to reach a fixed target in the
environment. These forces can show us if the human is trying
to reach the designated target or trying to follow (or escort) a
moving robot.

III. EXPERIMENTS

In this paper, we have proposed a method to learn human
intentions while observing their navigation paths. Due to the
complexity of human intentions, it is difficult to define a single
test that can prove the viability of the proposed algorithm.
Instead, we split our experiments into three parts:

1) First, we investigate the tracking ability of our algorithm
on the ETH walking pedestrians dataset [7].

2) Second, we choose scenes from the dataset with an
obvious change in the human direction and study the
change in the weight of reaching a fixed point in the
environment. This test shows the ability of the algorithm
to learn the intention of the human to reach a fixed target.

3) Finally, we test the system on a real robot following
a human. As the human stops or no longer matches its
velocity to the robot’s, the robot has to detect the change
in the human intention and stop.

Thus far, we have completed the first two parts and success-
fully coded the third part. In the first two parts, we rely
on the ETH dataset mapped to a 2-dimensional simulator
as explained in our previous work [8]. For the real robot
experiments, we implemented our system in Robot Operating
System [9]. The system controls the robot to follow the
closest human in the environment. To detect humans, we rely
on the human detection open-source code presented by the
Spencer project [10], which provides a variety of algorithms
to detect humans in an RGB-D camera.

IV. RESULTS

Figure 1 shows two sample trajectories of humans as they
change their intentions to reach the target and the correspond-
ing changes in the learned weights. In Figure 1(a) we can see
the human is traversing in a direction that does not lead to the
target for the first few frames and then changing his direction
toward the target. It can be observed in Figure 1(b) that the
change in direction is directly related to a stabilization of α0

-the intention weight for reaching the target- after decreasing
for the first few frames. Figure 1(c) shows an opposite scenario
where the human moves toward the target in the first few
frames, after which he changes his direction away from the
target. Consequently, it can be observed in Figure 1(d) that
the intention weight decreased substantially after the change
in the direction.

Our experiments tracked the humans and compared the error
between each predicted and observed position. The results
show an average error of 0.10 m between the two positions.
This metric shows that the instant prediction of the future
position is accurate. In the final submission, we will compare
our results against other algorithms in the literature ([2], [6]),
where the first employs a method similar to ours with fixed
weights, and the second trains an LSTM based neural network
to track humans in the environment. It should be noted that
our tracking tests are conducted only to prove the ability of the
system to learn the SFM weights and not to show a long-term
tracking ability. In fact, we cannot confirm without testing if
our algorithm will be able to track humans accurately in a
long horizon or not, as it is not designed to do so.

V. CONCLUSION AND FUTURE WORK

We demonstrated an algorithm able to track humans while
learning their intentions online and conducted experiments to
assess both the tracking and intention learning capability of the
method. The experiments showed the proposed method is able
to cope with changes in human intentions and track humans
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Fig. 1: Two sample trajectories from the dataset mapped into the simulator. The simulated environments in (a) and (c) show
static obstacles in dark grey and humans as blue ellipses. The start point is shown in green and the target region is shown in
red. The orange line depicts the humans trajectory. (b) shows the intention to reach the target for the trajectory in (a) and (d)
shows the intention to reach the target for the trajectory in (c).

even when their intentions changed. In addition, we suggested
a scenario where we can investigate the algorithm on a real
robot. We expect the robot to learn the intention of the human
to interact with it and stop once it detects that the human is
no longer trying to match his velocity to the robot’s.
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