
Learning to Navigate Like Humans
Mahmoud Hamandi, Mike D’Arcy, and Pooyan Fazli

Abstract—We present a novel human-aware navigation ap-
proach, where the robot learns to mimic humans to navigate
safely in crowds. The presented model referred to as Deep-
MoTIon, is trained with pedestrian surveillance data to predict
human velocity. The robot processes LiDAR scans via the trained
network to navigate to the target location. Our experiments show
that DeepMoTIon outperforms state-of-the art in terms of human
imitation and reaches the target on 100% of the test cases without
breaching humans’ safe distance.

I. INTRODUCTION
Robots are gradually moving from factories and labs to

streets, homes, offices, and healthcare facilities. These robots
are currently assigned tasks that require interaction with
humans, such as guiding passengers through busy airport
terminals [1] or roaming around university buildings and
interacting with nearby humans [2, 3].

As robots are increasingly becoming part of our everyday
lives, it is essential for them to be aware of the surrounding
humans while performing their tasks. Navigation is a basic
skill for autonomous robots. We define human-aware naviga-
tion as the ability of the robot to navigate while complying
with social norms and ensuring human safety.

While many existing systems allow robots to navigate safely
within crowds [4, 5], they still rely on manually-crafted models
of human motion. Such models may capture the aspects of
human motion as understood by their designers, while they
may likely miss subtle trends that characterize their human
aspect. In addition, manually-crafted models do not have a way
to automatically adapt to different cultures, so it may require
significant manual effort to be used in a different environment.

In this context we present DeepMoTIon (Deep Model for
Target-driven Imitation), a deep imitation learning algorithm
that eliminates the need for an explicit model of human motion
and instead learns the human navigation patterns directly by
observing pedestrians.

With the absence of a true human simulator, learning the
reward governing human motion is expensive with current
Inverse Reinforcement Learning algorithms such as the one
presented in [6]. As such, we tackle the imitation problem
as a classification one, where the network learns a specific
command for each observation without simulating the learned
policy. This approach reduces the amount of time required
for each architecture test and allows us to explore multiple
network configurations.

II. PROBLEM DEFINITION

Figure 1 shows the different parts of our human imita-
tion method. Our model is trained with the ETH pedestrian
dataset [7] presenting videos of humans navigating in a real-
world environment. The dataset contains environment maps

Fig. 1: Algorithm overview: human imitation learning with
DeepMoTIon.

and a set χ of humans, and for each human h the trajectory ζh
that they took through the environment. Each ζh is a sequence
of locations lh,t, representing the position of human h at
time t. We use a simulator to estimate LiDAR scans zh,t,
velocities vh,t, and target locations τh,t for each human, which
we then use to train the network to imitate the human trajec-
tories. After training, the robot processes its target location
and LiDAR scans via DeepMoTIon to calculate navigational
commands that allow it to reach the target safely while moving
similarly to the humans in the dataset.

Target Re-feed

Skip Connection to Input

LS
TM

, 7
20

LS
TM

, 1
28

D
en

se
 +

 R
eL

U

D
ro

po
ut

D
en

se
 +

 R
eL

U

B
N

Target Direction

LiDAR Scans

Robot Direction

Robot Speed

3x1 Conv, 8
 x9

Input
Vector

Fig. 2: DeepMoTIon network architecture.

III. DEEPMOTION

DeepMoTIon is a deep neural network f(sh,t) defined as:
{dh,t, vh,t} = f(sh,t),

sh,t = [zh,t−1, zh,t, τh,t]
T , (1)

where sh,t is the input state vector, and {dh,t, vh,t} is the
output action set describing the direction and magnitude of the
velocity vh,t. As shown in Equation (1), our network is trained
to predict velocity commands to reach a target represented by
its direction τh,t, while processing the current and last raw
LiDAR scans zh,(t−1,t). The concatenation of the two LiDAR
scans was necessary for the network to deduce static from
dynamic obstacles and learn the motion pattern of the latter.

Our DNN architecture is shown in Figure 2. In this ar-
chitecture the skip connections from the input were inspired
by classical planning algorithms [8] such as value iteration
and greedy search. However, after the convolutional layers
we re-feed only the raw target direction to the network due
to its direct correlation to the velocity direction, while the
LiDAR scans add minimal value in their raw state. We found
through experimentation that only shared convolutional layers
were required for the network to correctly deduce the direction
and speed from the input state while adding specialized
convolutional layers for each of the two outputs reduced its
performance.

In addition, for a planning algorithm each state and the
corresponding action are tightly related to the previous obser-
vations. The LSTM layer was added to the network to allow it
to remember the past state of the environment, as these layers
have been shown to improve the prediction of future states
based on their memory of the past [9]. We later provide an
experimental comparison to show the LSTM’s necessity. Batch
normalization was necessary to assure the boundedness of the
input to the LSTM layers.

A. Loss Function

Our loss function is designed to train the network to output
the direction and speed as seen in the human dataset by
minimizing the squared error of the speed and the cross
entropy error of the output direction.

However, human imitation presents a challenge due to their
stochasticity. In fact, two humans might behave differently
even with the same observations depending on their person-
ality and other hidden factors. This suggests that the correct
direction might be one of many directions in a range about the
ground-truth. As such it is desirable to penalize the network
less for cases where it is close to the ground truth than cases
where it is completely wrong. To this end, we model the output
direction as a Gaussian distribution about the human-chosen
direction with a standard deviation σ.

We also observe that humans closely approach obstacles
and other humans. While this is acceptable between humans,
a robot is typically less agile, so it must keep a larger distance
to all obstacles to ensure the safety of both itself and humans.
This motivates us to add a safety factor to the loss function
that encourages a larger distance between the robot and the
closest object around it.

As such, our complete loss function for a batch of N
training examples can be expressed as follows:

Speed Loss︷ ︸︸ ︷
1

N

N∑
i=1

(vi − v̂i)2 +

Direction Loss︷ ︸︸ ︷
1

N

N∑
i=1

H(di, d̂i(σ))

+
1

N

N∑
i=1

max(0, 1− log(min(zi) + 1− safeDistance))︸ ︷︷ ︸
Safety Loss

,

(1)

where H(p, q) is the cross entropy loss function, di is the
predicted direction distribution, and d̂i(σ) is the Gaussian
distribution about the human-chosen direction with standard
deviation σ.

IV. EXPERIMENTS

To evaluate the performance of DeepMoTIon when imitat-
ing humans, we conducted experiments on the ETH BIWI
walking pedestrians dataset [7]. The dataset provides annotated
trajectories of 650 humans recorded over 25 minutes of time
on two maps. To avoid overfitting and allow the network to
generalize to unseen maps, the training data was augmented
by replicating each path while rotating the map at random
angles. The dense crowds and sudden changes of pedestrian
direction in this dataset make it sufficiently challenging for
our experiments.

We compared our results with the Generalized Reactive
Planner (GRP) algorithm presented by Groshev et al. in [8],
the End-to-End Motion Planning (EMP) algorithm presented
by Pfeiffer et al. in [10] and the Social Force Model (SFM)
based robot control scheme presented by Ferrer et al. in [4]. In
addition, to test the necessity of the LSTM layer we test two
variants of the network, where we refer to DeepMoTIonLSTM

as the DNN with the architecture as explained before and
DeepMoTIonconv as the DNN without any LSTM layers.
More convolutional layers were added to DeepMoTIonconv
to accommodate for the depth difference.

We assess the trajectories generated by each algorithm with
the following metrics:

1) Squared Path Difference (SPD): SPD is the sum of
squared error between the correct human trajectory and
the one taken by the robot.

2) Proximity: Proximity is the closest distance the robot
comes to a human on its path.

3) Number of Collisions: The number of times the robot
collides with a human while navigating.

4) Target: The percentage of trials where the robot reached
the goal within the 400-step threshold.

A. Comparison with Benchmarks

Table I compares our network against the benchmark algo-
rithms and assess each following the metrics presented earlier.

TABLE I: Performance Metrics Comparison

SPD Proximity Collisions Target

DeepMoTIonLSTM 151 0.31 0.67 100%
DeepMoTIonconv 732 0.25 0.89 69%
SFM 3817 0.29 0.26 100%
EMP 15437 0.001 7.69 32%
GRP 334 0.18 0.78 84%

Table I illustrates the ability of our network to imitate
humans better than the other benchmarks for all the metrics,
with the exception of SFM showing a lower rate of collision.
SPD shows that our network has the lowest path difference for

all the tested algorithms, with the next best algorithm (GRP)
showing more than double the path difference.

Table I also shows that DeepMoTIonLSTM reaches the
target on 100% of the trials, while the other networks fail many
with EMP reaching the target only 32% and GRP reaching
the target 84% of the trials. The proximity parameter shows
that our network keeps an average proximity of 0.31m to any
human, while SFM keeps a 0.29m despite explicitly weighting
its repulsive force to humans the most out of the other social
forces. Collisions shows that SFM has the lowest number of
collisions among all algorithms. This can be explained by the
ability of the algorithm to stop or reverse its direction in the
case of dense crowds, while all the other networks were not
trained on any human demonstration that exerted that type of
behavior. We expect DeepMoTIon to learn to stop and avoid
collisions better when trained on more pedestrian data showing
a wider set of possible navigation scenarios.

In addition, the LSTM variant of DeepMoTIon imitates
humans much better than DeepMoTIonconv , as shown in Table
I, where DeepMoTIonLSTM exhibits a better performance for
all metrics.

Finally, we note that our network was able to navigate even
with a LiDAR range other than the one it was trained on. All
the algorithms above were trained and tested on a LiDAR
with a 30m range. To show the ability of our network to
generalize to different ranges, we tested its performance with
a LiDAR scanner with a 6m range without any retraining. The
network was still able to reach the target on 97% of the trials,
with a slight increase in path difference, and a decrease in
collisions to 0.51. The decrease in collisions was expected,
as the network is observing obstacles in locations that were
supposed to be free, and thus the robot becomes more careful.

V. CONCLUSION AND FUTURE WORK

We introduced a novel deep imitation learning frame-
work and studied its performance when learning to navigate
from human traces. We trained the deep network to predict
robot command velocities from raw LiDAR scans without
the requirement of any preprocessing or classification of the
surrounding objects. Our experiments showed DeepMoTIon’s
ability to generate navigational commands similar to humans,
and plan a path to the target on all test sets, outperforming all
of the benchmarks on path difference metrics, and all except
SFM on other metrics like collisions. In addition, we presented
a comparative assessment that showed the necessity of an
LSTM layer for a planning algorithm via a DNN, where the
robot navigating without the LSTM was led astray on many
test cases. Finally, we presented a novel loss function to train
the network. The loss function allowed us to accommodate for
human motion stochasticity while at the same time forcing the
robot to navigate safely.

In the future, we plan to train the network to navigate
using raw images instead of LiDAR scans, where we believe
the larger bandwidth of data can help the network understand
human motion from their point of view.

REFERENCES

[1] R. Triebel, K. Arras, R. Alami, L. Beyer, S. Breuers,
R. Chatila, M. Chetouani, D. Cremers, V. Evers, M. Fiore
et al., “Spencer: A socially aware service robot for
passenger guidance and help in busy airports,” in Field
and Service Robotics. Springer, 2016, pp. 607–622.

[2] M. Veloso, J. Biswas, B. Coltin, S. Rosenthal, T. Kollar,
C. Mericli, M. Samadi, S. Brandao, and R. Ventura,
“Cobots: Collaborative robots servicing multi-floor build-
ings,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS,
2012, pp. 5446–5447.

[3] U. Patel, E. Hatay, M. D’Arcy, G. Zand, and P. Fa-
zli, “Beam: A collaborative autonomous mobile service
robot,” in Proceedings of the AAAI Fall Symposium on
Artificial Intelligence for Human-Robot Interaction, AI-
HRI 2017, 2017.

[4] G. Ferrer, A. G. Zulueta, F. H. Cotarelo, and A. Sanfeliu,
“Robot social-aware navigation framework to accom-
pany people walking side-by-side,” Autonomous robots,
vol. 41, no. 4, pp. 775–793, 2017.

[5] E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon,
“A human aware mobile robot motion planner,” IEEE
Transactions on Robotics, vol. 23, no. 5, pp. 874–883,

2007.
[6] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K.

Dey, “Maximum entropy inverse reinforcement learning.”
in Proceedings of the AAAI Conference on Artificial
Intelligence, AAAI, 2008, pp. 1433–1438.

[7] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool,
“You’ll never walk alone: Modeling social behavior for
multi-target tracking,” in Proceedings of the 12th IEEE
International Conference on Computer Vision, ICCV,
2009, pp. 261–268.

[8] E. Groshev, A. Tamar, S. Srivastava, and P. Abbeel,
“Learning generalized reactive policies using deep neural
networks,” arXiv preprint arXiv:1708.07280, 2017.

[9] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink,
and J. Schmidhuber, “Lstm: A search space odyssey,”
IEEE Transactions on Neural Networks and Learning
Systems, vol. 28, no. 10, pp. 2222–2232, 2017.

[10] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and
C. Cadena, “From perception to decision: A data-driven
approach to end-to-end motion planning for autonomous
ground robots,” in Proceedings of the IEEE International
Conference on Robotics and Automation, ICRA, 2017,
pp. 1527–1533.

	INTRODUCTION
	Problem Definition
	DeepMoTIon
	Loss Function

	Experiments
	Comparison with Benchmarks

	Conclusion and future work

