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Abstract. We present a novel approach for fast prediction of human
reaching motion in the context of human-robot collaboration in manip-
ulation tasks. The method trains a recurrent neural network to process
the three-dimensional hand trajectory and predict the intended target
along with its certainty about the position. The network then updates its
estimate as it receives more observations while advantaging the positions
it is more certain about. To assess the proposed algorithm, we build a
library of human hand trajectories reaching targets on a fine grid. Our
experiments show the advantage of our algorithm over the state of the
art in terms of classification accuracy.

Keywords: Human-robot collaboration · Robot manipulation
Robot learning

1 Introduction

Automated systems have been increasingly used in factories for the past decade
[1–3]. However, these machines are usually placed in isolation from any humans
due to safety reasons [4] and their lack of understanding of human motion.
Interest in human-robot coexistence is increasing in manufacturing environments
[5]. Significant productivity can be achieved if humans and robots can share
the same workspace and work in close proximity. Robots can reduce the task
completion time by concurrently working with humans.

With the increased proximity between humans and robots, it becomes imper-
ative for the robots to be aware of humans and plan their motions in such a way
that avoids cluttering the shared workspace, blocking human path, or inflicting
injuries. Inspired by these requirements, this work investigates the early classifi-
cation of human arm motion, where the robot has to predict the target position
the human is reaching for and plan its actions accordingly.

Early work presented by Jung and Park [6] learned the relation between
the intended target of an operator and their pose through a neural network.
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Their work connected the 3-dimensional target position with the pose of the
human shoulder, elbow, and wrist, which they consider enough to understand
the hand motion. Although their work is promising, it does not consider an online
prediction phase, but rather understands the connection between the pose and
the target positions to build an ergonomic product for the human operator.

Mainprice et al. [7] provided a solution for the problem, where they learn
a Gaussian Mixture Model representation for each possible target location and
classify the arm trajectories online as reaching to the most probable one. The
target classification is followed by a voxel occupancy calculation to know the
safe area for the robot to reach. While this approach provides promising results,
it requires extensive data (25 trajectories) for each possible target location, ren-
dering it difficult to generalize to continuous spaces.

Later, Perez and Shah [8] presented another method, where they learn a
motion library consisting of a Gaussian distribution for each target location
and classify each trajectory to the most probable target after adding task level
priors. Then during runtime, they warp each path to match the learned one using
Dynamic Time Warping (DTW) [9] and classify the trajectory as reaching to
the highest Gaussian probability density function. This approach is able to learn
target specific trajectories with less data than the former method, however, it is
not certain to generalize to unseen targets.

Similar to the above methods, Maeda et al. [10] presented a framework where
they find the most likely sequence from the pool of sample trajectories stored
in a lookup table and assume the human will follow a similar trajectory to the
target. While these approaches can classify a small number of discrete targets
accurately, it is desirable to learn a continuous space representation that allows
targets to be placed anywhere in the workspace.

Mainprice et al. [11] presented an interesting approach, where they predict
the trajectory of the human using STOMP algorithm [12]. Their approach learns
the human motion cost function from demonstrations using path integral inverse
optimal control [13] and then predict the target and human motion online after
applying the cost functions into STOMP. While this approach is very promising,
it requires an accurate capture of the pose of multiple joints of the human arm
while reaching for the target in real-time.

In this paper, we propose a network architecture, which we refer to as Human-
INtended Target (HINT) that predicts the target position the human is reaching
for in continuous environments solemnly from the trajectory of the tip of his
hand. In addition, the network is trained to output its confidence of the estimate
and update its belief as it receives more observations.

Figure 1 shows the offline and online phases of our system. In the offline
stage, we build a dataset of hand trajectories reaching for one of the targets
placed on a table and train the network to match the collected hand positions
and targets. Then, in the online stage, we predict the target position intended
by the human each time we receive a new hand position. The target position will
be used later to help the robot plan its trajectory in a safe manner. We compare
the performance of HINT with other methods from the literature to show the
advantage of the proposed algorithm over the state of the art.
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Fig. 1. In the offline phase, the network (HINT) is trained to match the collected hand
trajectories and corresponding target positions. In the online phase, hand positions are
detected in real time and corresponding target positions are predicted. Human intended
target positions are used later to plan the robot motion in a safe manner.

Fig. 2. HINT network architecture.
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2 Technical Approach

In this paper, we design a recurrent neural network shown in Fig. 2 that predicts
the reaching target and its confidence about the estimate for the given hand
trajectory. The network reads the current hand position in the 3-dimensional
space and processes the input with a series of four dense layers, each with 128
nodes followed by a tanh activation function. This first group of dense layers
are followed by a recurrent LSTM layer with 128 hidden nodes. The recurrent
layer is then followed by a group of three dense layers with 128, 64, and 2 nodes
respectively, which output the (x, y) position of the target. The first two of these
layers are equipped with a tanh activation function, while the last one has no
activation function.

The output (x, y) position of the target is fed into another row of dense layers
along with the output of the 64 node dense layer. This extra row of dense layers
is used to predict the precision Σ−1 of the (x, y) estimate. As such, this row of
dense layers is constructed out of three consecutive layers, with 32, 16, and 4
nodes respectively, where the first two have a tanh activation function, while the
last has no activation function. The output 4 nodes represent the 2-dimensional
precision matrix.

The output (x, y) and precision Σ−1 are then processed by a new recurrent
layer, which we refer to as the the Precision Averaging layer, to provide the final
target position and precision. This layer averages previously estimated positions
based on their confidence and can be explained mathematically as:

(p, Σ−1) = (
Σ−1

newpnew + γΣ−1
oldpold

Σ−1
new + γΣ−1

old

, Σ−1
new + γΣ−1

old), (1)

where pold and Σ−1
old are the predicted target position (x, y) and precision for the

previous step of the trajectory, pnew and Σ−1
new are the predicted target position

(x, y) and precision up to the Precision Averaging layer after seeing the last step
of the trajectory, (p, Σ−1) are the resultant target prediction (x, y) and precision
calculated by the layer, and γ is a discount factor chosen to balance between the
effect of the old prediction and the new one.

The network is trained to minimize the squared error between the predicted
and the actual target position. Since the predicted (x, y) position is a precision-
weighted average of all previous predictions, the network learns to output a
precision for each prediction relative to its certainty about the target position,
so that the final estimate would be dominated by the values it is more certain
about.

To use the network for classification, we choose the class with the minimum
distance to the predicted target position. However, due to the network’s ability
to output (x, y) positions in a continuous space instead of choosing a class, it is
able to generalize to locations that it has not seen during training, while if it was
trained for classification it would have been restricted to the training classes.



584 M. Hamandi et al.

(a) Human and robot sharing the
same workspace in a collaborative
manipulation task.

(b) The setup from the robot’s point of view.
(A) shows the microcontroller processing the IMU
data, and (B) shows the red LED detected by the
depth camera.

Fig. 3. Human-robot collaboration setup.

3 Experiments

To assess the performance of our algorithm, we collected a dataset of hand
trajectories reaching for one of the cells of the grid shown in Fig. 3. The targets
were chosen randomly out of the 176 possible targets presented by the 16 × 11
grid fixed on the table, with each target being represented by a 5 × 5 cm2. The
aim of the grid is to discretize the workspace for a human to visually find a
randomly assigned target while being fine enough for the network to learn a
continuous probability distribution of the target.

The human subject was instructed to start from the position where they
feel most comfortable at and reach for the target being displayed on a screen
in front of him. As the targets changed, the human was allowed to move freely
and as such multiple start positions exist for each trajectory. As the human
reached for the target, we collected the hand position using a depth camera as
well as readings from a 6-DOF IMU fixed to the hand, RGB images from the
camera, and the point cloud generated by the camera. In total, we collected
704 trajectories distributed equally over the 176 target positions, with the order
being chosen at random to assure the independence between one trajectory and
another. These trajectories were split equally between training and testing, with
some target positions being represented in only one of the two sets. Each target
is represented by zero to four trajectories in the training set, and the remaining
of the four collected trajectories are placed in the test set. To detect and track
the hand position in the image and the point cloud, we fixed a bright LED light
on the tip of the hand as shown in Fig. 3, which we tracked in the image and
point cloud to record the 3-dimensional position of the hand. In addition, the
image and the point cloud allow the detection of the grid location inferred by
the four AR markers placed near the grid edges.
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Fig. 4. Sample hand trajectories reaching 16 targets in the grid.

Figure 4 shows the collected trajectories for 16 targets in the grid, demon-
strating that the trajectories are difficult to separate especially near the starting
position.

4 Results

We compare our algorithm with one other method from the literature [8] where
they suggest to build a motion library presenting a probability flow tube (PFT)
[14] for each target position, i.e., the mean and variance of each position along
the trajectory. During online classification, they warp the test trajectory using
Dynamic Time Warping (DTW) [9] to match the trajectories with those in the
motion library. Finally, they classify the target location as the one with the
smallest Mahalanobis distance [15] based on the matched means and variances
from the motion library. It should be noted that this algorithm is not real time for
more than 3 target positions without multi-threading, while our dataset presents
176 target positions.

Figure 5 shows the average classification accuracy of our method and the
benchmark algorithm. As the graph shows, our method has a higher accuracy
throughout the trajectory. In addition, PFT has near zero accuracy in the begin-
ning where the trajectories are non-separable, while our algorithm has near 30%
accuracy. It is also observed that near the end of the trajectories HINT reaches
a plateau of 80%, while PFT reaches only 30%. This can be related to two rea-
sons: first, PFT is designed to be trained on roughly 20 demonstrations of each
class to build an understanding of the shape of the trajectories and the possible
variance of each, while the dataset presented here has zero to four examples of
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Fig. 5. Classification accuracy comparison between our method, HINT, and the bench-
mark method, PFT.

each in the training set. Second, since HINT learns to output an (x, y) position
instead of a class, it is able to generalize to targets not shown in the training
set.

5 Conclusion and Future Work

We presented HINT, a novel method for early prediction of human intended
target. Our deep learning based method reads 3-dimensional hand positions and
predicts the 2-dimensional target position and its confidence about the pre-
diction. We built an extensive dataset of hand trajectories reaching for known
targets on a table. Our dataset contains multiple trials for each target position,
with each trial starting from a randomly chosen position. HINT outperformed
the benchmark algorithm PFT by 50% in classification accuracy when trained
and tested on the created dataset. In the future, we intend to collect our data
with a motion capture system to reduce the noise in the recorded positions.
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