
Safe Navigation in Dynamic, Unknown, Continuous, and Cluttered
Environments

Mike D’Arcy, Pooyan Fazli, and Dan Simon

Abstract— We introduce PROBLP, a probabilistic local plan-
ner, for safe navigation of an autonomous robot in dynamic,
unknown, continuous, and cluttered environments. We combine
the proposed reactive planner with an existing global planner
and evaluate the hybrid in challenging simulated environments.
The experiments show that our method achieves a 77% reduc-
tion in collisions over the straight-line local planner we use as
a benchmark.

I. INTRODUCTION

Safe navigation through Dynamic, Unknown, Continuous,
and Cluttered (DUCC) environments is a crucial ability
for autonomous robots in search and rescue, self-driving
cars, and servicing tasks. A robot traveling through such
environments must make fast decisions to react to moving
obstacles, while still finding an efficient path through the
partially or fully unknown area.

Path planning approaches can be broadly divided into
global and local/reactive methods. Global planners attempt to
find a complete path from the robot to the goal. A common
way to extend these methods to handle moving obstacles is
to add a time dimension to the planning space and modeling
obstacles as spacetime volumes. This has the advantage of
making it possible to consider the long-term effects of actions
but can also result in long planning times in large or complex
environments. However, in dynamic environments, standing
still for a long time while replanning could result in a
collision. In addition, many global approaches expect that
a full map of the target area is given a priori [1, 6, 15, 17],
which is an unrealistic assumption in many scenarios.

The limitations of global planners are often addressed by
combining the global planner with a local method. Local
or reactive planners only attempt to plan one or more steps
in the future, without necessarily finding a complete path
to the goal. This results in much faster decision-making for
autonomous robots in the vicinity of dynamic obstacles but
typically has weak goal-directedness, making it hard to pro-
vide completeness or optimality guarantees. Many reactive
planners assume deterministic knowledge of obstacles, such
as most Velocity Obstacle based approaches [4, 5, 18].

In this paper, we define the safe navigation problem in
DUCC environments, with no constraints on the shape or size
of the environment or the shape or velocity of the moving
obstacles. The proposed local planner, PROBLP, consolidates
information about the target and the obstacles detected by

Mike D’Arcy, Pooyan Fazli, and Dan Simon are with
the Electrical Engineering and Computer Science Department,
Cleveland State University, Cleveland, OH 44115, USA
{m.m.darcy,p.fazli,d.j.simon}@csuohio.edu

the range sensor to identify a safe path in the environment.
We run experiments in which we combine PROBLP with
the Dynamic Rapidly-exploring Random Tree (DRRT) [3]
algorithm to produce a hybrid capable of navigating through
complex environments while still remaining safe around
moving obstacles. We show empirically that this combined
approach significantly outperforms the DRRT algorithm,
which by default uses a straight-line local planner.

II. RELATED WORK

Many existing navigation approaches work only in discrete
state spaces. This is the case for D* [16], AD* [11], and also
for the SIPP based methods [14, 12]. While it is usually
possible to discretize a continuous environment into an
occupancy grid [2] or roadmap [9], doing so can require large
amounts of memory and processing power, and it destroys
some of the information about the environment.

Many of the methods that do work in DUCC environments
are based on Rapidly-exploring Random Trees (RRT) [10].
RRT methods use random sampling to build a tree struc-
ture over the map. Given enough samples, the RRT will
eventually find a path if one exists, so it is called a
probabilistically complete algorithm. Due to the path being
constructed randomly, there is no upper bound on the cost
of the path produced in regular RRT, and it can be proven
that the probability of the basic RRT algorithm producing
an optimal path is zero [7]. This path optimality problem
is addressed by RRT* [7], an extension of RRT that will
converge to an optimal solution asymptotically as the number
of random samples increases. While this improves the speed
of path execution, the planning time to find an optimal path
can still be quite large, making it unsafe for environments
where obstacles may be moving during the planning process.
Anytime RRT* [8] was developed to reduce this drawback
by quickly finding a suboptimal solution and improving it
throughout the execution of the path, but some challenges
remain. For both RRT and RRT*, if the path to the goal
requires going through a very narrow set of acceptable states,
as is the case with a narrow tunnel, the planning time can
increase significantly as the probability of sampling one of
the acceptable states is low.

In dynamic environments where the initial solution may
have to be replanned several times, the potentially high
planning time of RRT methods is amplified. A variant of RRT
that focuses on efficient replanning with a time dimension
is the Multipartite RRT (MP-RRT) algorithm [19], which
reuses parts of the previous tree to significantly reduce
the required planning time. However, while MP-RRT is



Fig. 1: A sample environment. Static obstacles are dark grey
and moving obstacles are light blue. The start point is shown
in green on the bottom left of the map, and the target region
is shown in red on bottom right. The small purple circle
represents the robot, the orange line depicts the robot’s range
sensor readings, and the green line shows the robot’s path.

capable of planning in continuous, unknown environments
with moving obstacles and has a low replanning time relative
to other RRT methods, the planning time still increases
with the size and complexity of the environment due to the
nearest-neighbor search over all the nodes in the tree. This
makes the approach unsafe for some real-world applications,
because obstacles may collide with the robot while it is
replanning.

A method that does not plan a complete path to the goal
was proposed by Petti and Fraichard [13]. Called Partial
Motion Planning (PMP), this approach still uses RRT as
the exploration strategy but handles real-time constraints by
stopping the growth of the tree when planning time runs out
and provides provable safety conditions using the Inevitable
Collision States (ICS) concept. PMP provides a significant
improvement in real-time planning ability over the global
RRT methods, but there remains the possibility that PMP
will not find any collision-free trajectories, even when one
exists. If there is only a narrow path to escape obstacles,
PMP’s uniform sampling strategy may not be as effective as
an intelligently biased sampling approach.

III. PROBLEM STATEMENT

The problem takes place in a continuous two-dimensional
configuration space C with static and dynamic obstacles. Our
agent is a holonomic robot that can move at a fixed speed. It
has no prior information about the size and shape of the map
or the velocity of the moving obstacles in the environment.
The robot has a limited-range 360° sensor, with which it
can determine the distance to the nearest obstacle in any
direction. We additionally assume the robot can perfectly
determine its own location and the location of the goal in
terms of (x, y) coordinates in the map. The objective of
the robot is to navigate from an initial position to the goal,
without colliding with any of the static or dynamic obstacles.

Figure 1 shows a sample environment and a robot navi-
gating toward the target point.

IV. PROBABILISTIC LOCAL PLANNER (PROBLP)

We introduce PROBLP, a probabilistic local planner, to
enable an autonomous robot to navigate safely in DUCC
environments. The algorithm works by sampling a set of
candidate trajectories from the robot’s current position and
then choosing the best by scoring each candidate on safety
and on how much closer it brings the robot to the goal. We
define a trajectory as a sequence of waypoints p0, p1, · · · pn,
and we say the robot has executed a trajectory when it has
visited all of the waypoints in order. Our approach does
not sample trajectories entirely at random and instead biases
the sampling using a probability distribution to increase the
likelihood of choosing favorable candidate trajectories. We
will first describe the construction of the distribution, and
then how the trajectory sampling is performed.

A. Trajectory Sampling: Probability Distribution

The probability distribution fΘ that the robot uses to
sample trajectories is a distribution over direction angles
θ ∈ Θ = [0, 2π), so fΘ(θ) is the probability of θ being the
best direction for the robot to travel next. We construct fΘ

using two other distributions: a target distribution, fgΘ, and an
obstacle distribution, foΘ. Each of these are also distributions
over θ ∈ Θ ∈ [0, 2π). Note that while fΘ is a probability
distribution, fgΘ and foΘ are only pseudo probability distribu-
tions, because their integrals do not necessarily sum to 1.

1) Target Distribution: The target distribution fgΘ repre-
sents the extent to which moving at a direction angle θ would
bring the robot closer to the goal. It is defined as a Gaussian
distribution:

fgΘ(θ) =
1√

2πσ2
e−

angleDiff(θ,α)2

2σ2 , (1)

where α is the direction angle between the current location
of the robot and the goal, and σ is the standard deviation.
The choice of σ will affect the behavior of the robot,
with small values making it strongly prefer to go directly
towards the goal, and large values making it more willing
to take a roundabout path to stay safe around obstacles.
angleDiff(θ1, θ2) returns the absolute value of the
smallest difference between two angles. It can be formally
written as:

angleDiff(θ1, θ2) = min
(
(θ1 − θ2) mod 2π,

(θ2 − θ1) mod 2π
)

2) Obstacle Distribution: The obstacle distribution foΘ
represents the extent to which moving in a direction θ would
move the robot into free space. It is defined as:

foΘ(θ) =
range(θ)

λ
, (2)

where range(θ) is the distance between the robot and the
nearest obstacle at direction θ, and λ is a scale factor. The



Fig. 2: The red and green lines show obstacle and target
distributions respectively. The dashed part is cut away, and
the solid line is the resulting final distribution.

specific λ chosen can vary by use case and affects the robot’s
sensitivity to obstacles, with higher values increasing the
sensitivity. In our experiments, we set it to:

λ = maxRange×
√

2πσ2 (3)

where maxRange is the maximum range of the robot’s
range sensor.

To combine the target and obstacle distributions into the
final distribution fΘ, we take the element-wise minimum and
then normalize the area under the curve to be 1:

f̂Θ = min(fgΘ, f
o
Θ) (4)

fΘ =
f̂Θ∫ 2π

θ=0

f̂Θ

(5)

Figure 2 shows an example of the result of combining two
distributions.

B. Trajectory Sampling: Selecting the Candidate Trajecto-
ries

We use fΘ to sample a set of candidate trajectories, from
which the robot will select its next movement. Each candi-
date trajectory is constructed as follows: The first waypoint
p0 is set to the current location of the robot. We then sample
an angle θ at random from [0, 2π), biased by fΘ. The location
of p1 is determined by predicting the location the robot
would have if it started at p0 and moved in a direction of
θ for ∆t seconds. ∆t is the computation time allowed for
the robot. The remaining waypoints up to pn are computed
in a similar way, with the caveat that a new fΘ must be
constructed for each waypoint.

Recall that fΘ is composed of the target and obstacle
distributions. The target distribution is constructed using the
direction angle between the current location of the robot
and the goal. However, when picking p2, we must consider
that the robot will start from the previous waypoint p1 and
not from its current position p0, so the target distribution
should be constructed using the direction angle from p1 to
the goal. For the obstacle distribution, we must consider that

not only the location of the robot will change, but also time
will pass as it progresses along the trajectory. Therefore,
we predict the future locations of the moving obstacles to
construct an accurate distribution. To this end, we define a
predictor function that returns the probability of an obstacle
obs occupying position pos at time t ≥ t0:

P (obs|pos, t) = min

(
4

1 + (t− t0)

1 + d
, 1

)
, (6)

where t0 is the current time, and d = minc∈Cobs‖c− pos‖.
Cobs is the set of all locations currently occupied by obsta-
cles, which is computed by the robot’s range sensor. If no
information is available with which to predict future obstacle
positions, it can simply be assumed that ∀t P (obs|pos, t) =
P (obs|pos, t0), which is trivial to compute directly from the
range sensor. However, better predictions improve safety and
reduce the need to replan. Likewise, there is no specific
reason to prefer the predictor function in Equation 6 to any
other obstacle prediction method, but through empirical test-
ing of many possible predictor functions in the experiments
in Section VI we found that this function works well.

Using the obstacle predictor function, we can define a
rangei(θ) function giving the predicted range sensor value
for angle θ at time ti = t0 + i∆t, with the robot predicted to
be located at pi. This function can be used in Equation 2 in
place of range(θ) to compute the predicted foΘ for future
times. Let Ciobs be the set of all points pos such that
P (obs|pos, ti) > γ, where γ is some cutoff value in the
range [0, 1]. Then let Ci,θobs ⊆ Ciobs be the subset of points
that lie on the line segment from pi to pi+(maxRange)(û),
where û is a unit vector with direction θ. Then:

rangei(θ) = min
c∈Ci,θobs

‖c− pi‖ (7)

The selection of the cutoff value γ can be adjusted depend-
ing on the use case, but in general it is most important not
to pick a value that is too low. For example, if γ = 0.01 and
there is some uncertainty in future obstacle locations, even
points relatively far from obstacles may exceed the small
cutoff value, unnecessarily restricting the robot’s options. A
large value of γ will increase the likelihood of sampling
waypoints with low safety scores, increasing the number of
samples needed to find a good trajectory, but it is less likely
to eliminate desirable trajectories. We found that a cutoff of
γ = 0.3 worked well in our experiments.

In general, when picking waypoint pi, fΘ should be
computed relative to the location of pi−1 and relative to
time ti−1 = t0 + (i− 1)∆t. After fΘ is constructed for this
location and time, pi can be chosen as described previously,
by picking a θ from fΘ and projecting the location the robot
would have after starting at pi−1 and traveling in direction
θ for ∆t seconds. The process is repeated up to waypoint
pn, at which point the generated trajectory is ranked by a
combination of distance and safety scores.



C. Trajectory Sampling: Selecting the Final Trajectory

Our algorithm is modular with respect to the metrics used
for the distance and safety scores, but we calculated them as
follows:

Distance Score = fΘ(β)× ‖pn − p0‖∑n−1
i=0 ‖pi+1 − pi‖

, (8)

where β is the direction angle between p0 and pn, and fΘ is
constructed relative to the current location of the robot and
to the current time. The second term in Equation 8 is used
for smoothing, as the ratio of straight-line distance to total
path length is larger for more straight trajectories.

Safety Score =

n∏
i=0

[1− P (obs|pi, t0 + i∆t)]. (9)

This is equivalent to the probability of the robot being able
to follow the trajectory without having any collisions. We
set a minimum safety threshold and eliminate all candidate
trajectories with a safety score below this threshold. This
prevents unsafe trajectories from being considered even if
they score highly on distance.

The final score of each trajectory is computed by taking a
weighted sum of the distance and safety scores. The safety
score is weighted by w and the distance score by (1 − w),
where w can be adjusted on a per-use-case basis to make
the robot more cautious (high w) or aggressive (low w).
The robot picks the trajectory with the highest score and
attempts to follow it to completion but continuously updates
the estimate of the safety as new information is obtained.
If the safety score goes below the minimum threshold,
the robot immediately plans a new trajectory to avoid the
danger. Otherwise, the robot will not replan until it reaches
the terminal waypoint pn. This makes the robot prefer to
continue on its planned smooth path, instead of replanning
and changing direction at each decision step.

V. COMBINING PROBLP WITH A GLOBAL PLANNER

PROBLP is weakly goal-directed, so the robot will attempt
to move directly towards the goal when it is safe to do
so. In an environment with complex arrangements of static
obstacles, such as a maze or office building, the reactive
planner alone may not be able to reach the goal due to
the need to backtrack. Therefore, it is desirable to combine
ProbLP with a global planner. The global planner plans a
path to the goal and divides it into a series of configurations
with straight lines between them. The goal for the reactive
planner is then to navigate to the next configuration instead
of to the target point. This allows the complex long-term
path planning to be handled by the global planner, and the
reactive planner can remain simple and fast for computing
safe trajectories around moving obstacles.

To this end, we selected the Dynamic Rapidly-exploring
Random Tree (DRRT) algorithm [3] as the global planner
to combine with PROBLP. DRRT is an extension of the
RRT algorithm that improves replanning speed by reusing

parts of the old tree when regrowing it. DRRT generates
configurations to guide our planner through the static map
and only considers static obstacles in its plan. The avoidance
of moving obstacles is entirely handled by PROBLP to avoid
the relatively expensive DRRT replanning. Because ProbLP
may deviate significantly from the DRRT path for safety
reasons, it will ask DRRT to replan if it cannot reach the
next configuration within 10 seconds.

DRRT initializes a tree with the root node at the goal, and
then grows the tree from the goal to the robot by repeatedly
(1) sampling a random point p, (2) finding the node nnear in
the tree that is closest to the sampled node, and (3) adding a
new node nnew to the tree at a distance of at most η along
the line from p to nnear, as long as the line from p to nnew
does not intersect any obstacles. This is done until one of
the nodes added to the tree is within some distance ε of the
robot’s location. The list of intermediate configurations given
to the local planner is the list of ancestors of the node closest
to the robot.

To work under limited-vision constraints, the DRRT builds
its own internal map for collision checking, which starts
empty and adds obstacles as they are observed. When it
replans, the tree is first checked for collisions, and any
branches that intersect an obstacle are pruned. The pruned
nodes are inserted into a fixed-size waypoint cache with
random replacement. Then the tree is regrown, and the
local planner is re-initialized with the resulting intermediate
configurations.

For our experiments, η = 3 m and ε = 0.7 m. The size of
the waypoint cache is 200 nodes and the random sampling
for growing the tree is biased to pick the robot’s location 10%
of the time, a random point from the waypoint cache 40%
of the time, and a point anywhere on the map the remaining
50% of the time. In addition, after the DRRT finds a path, we
smooth it by searching for pairs of nodes along the existing
path that could be connected by a straight line, skipping the
nodes between them.

VI. EXPERIMENTS

We evaluate the proposed algorithm in six simulated
environments. Each environment has a different static layout,
as shown in Figure 3. All maps are 80 m × 60 m. Twenty
dynamic obstacles are also generated randomly for each trial,
ten circular and ten square. The obstacles have random sizes
ranging between 0.5 m (radius for circles, edge length for
squares) and 3 m. Obstacles move randomly around the map,
and collisions between obstacles are not considered (i.e.,
obstacles can overlap and move through each other).

The robot speed was set to a constant 1.0 m/s for all
the experiments, but we tested a variety of obstacle settings.
These settings can be divided into two movement modes and
four speed modes. The movement modes are as follows:

• MM-1: Each obstacle picks a random point on the map
and moves straight towards it. When it reaches the point,
it picks a new point to move towards, and this continues
indefinitely.



(a) Map 1 (b) Map 2 (c) Map 3

(d) Map 4 (e) Map 5 (f) Map 6

Fig. 3: Maps used for experiments. Static obstacles are dark grey and moving obstacles are light blue. The start point is
shown in green on the bottom left of each map, and the target region is shown in red on top right. The orange circle
represents the robot’s sensor range.

• MM-2: Each obstacle moves back and forth between
two random points picked at the start of the simulation.

The speed modes are as follows:
• SP-1: All obstacles move 0.5 m/s (slower than the robot)
• SP-2: All obstacles move 1.0 m/s (same as the robot)
• SP-3: All obstacles move 1.5 m/s (faster than the robot)
• SP-4: Each obstacle moves randomly between 0.5-1.5

m/s
For each trial, all obstacles use the same movement and

speed modes (i.e., for a given trial, there cannot be some
obstacles using movement mode 1 and others using mode 2),
and we evaluate all combinations of maps, movement modes,
and speed modes for a total of 6× 2× 4 = 48 experimental
setups.

The robot is equipped with a range sensor with an effective
range of 10 m, and we assume the sensor can distinguish
between static and dynamic obstacles. In practice, this could
be achieved with an obstacle-tracking algorithm, and this
allows the obstacle predictor to be set to P (obs|p, t) = 1 if
p is an observed static obstacle, and otherwise the predictor
remains the same as defined in Equation 6. The robot speed
was set to a constant 1.0 m/s for all the experiments.

For scoring candidate trajectories, we set the safety thresh-
old to 0.1 to immediately filter out any trajectories that the
obstacle predictor determined had lower than a 10% chance
of being collision-free. When taking the weighted sum to
combine the distance and safety scores, we set the weights
to 0.5 for both distance and safety. The standard deviation,
σ, of the target distribution is set to 100, and trajectories
are sampled with a fixed length of two waypoints (i.e., two
timesteps into the future are considered). In our testing, we
found that these settings produce a good balance of path
optimality and safety.

We compare our hybrid approach (DRRT-PROBLP) with
a hybrid of DRRT and a straight-line local planner (DRRT-
SLLP). The straight-line local planner simply travels in a
straight line towards its next configuration. Unlike the DRRT
in DRRT-PROBLP, which only handles static obstacles and
leaves dynamic obstacle avoidance to PROBLP, the DRRT
in DRRT-SLLP does handle dynamic obstacles, because the
straight-line planner does not have an obstacle avoidance
strategy of its own. The straight-line planner asks DRRT to
replan if there are any obstacles obstructing its current path
within its range of vision.

Our experiments consist of 100 trials of each of the 48
combinations of speed mode and map. Both the DRRT-
PROBLP robot and the DRRT-SLLP robot run simultane-
ously on the same map with the exactly same obstacles, to
reduce error in the comparison. We allow a maximum of
5000 time steps to get to the goal before marking the trial as a
failure, and also mark the trial as a failure if the DRRT is ever
unable to find a path to the goal within 5000 nodes added
to the tree (which could happen if a moving obstacle blocks
the only path). Failed trials are not used when calculating
the averages in the results.

VII. RESULTS AND DISCUSSION

Of the 4800 trials, 4375 (91%) were successful and
425 (9%) failed. The results of the successful trials are shown
in Table I. In all of the speed modes and map combinations,
DRRT-PROBLP had fewer collisions than DRRT-SLLP,
and the overall averages were 0.27 collisions for DRRT-
PROBLP and 1.20 for DRRT-SLLP. Furthermore, even in
SP-3, where obstacles are all faster than the robot, DRRT-
PROBLP robot was able to receive less than one collision on
average for all maps. The overall average path lengths were



TABLE I: Results of experiments. Numbers represent average of collisions

MAP DRRT-PROBLP DRRT-SLLP

SP-1 SP-2 SP-3 SP-4 Average SP-1 SP-2 SP-3 SP-4 Average
1 0.01 0.07 0.43 0.13 0.16 0.60 0.91 1.22 0.91 0.90
2 0.09 0.19 0.62 0.19 0.27 0.50 1.19 1.67 1.28 1.15
3 0.05 0.18 0.85 0.25 0.33 1.12 1.71 2.46 1.74 1.75
4 0.03 0.10 0.65 0.24 0.25 0.54 1.06 1.73 1.13 1.10
5 0.13 0.14 0.65 0.26 0.30 0.39 0.90 1.47 1.02 0.94
6 0.07 0.17 0.78 0.31 0.33 0.69 1.48 1.89 1.26 1.33

Average 0.05 0.13 0.68 0.24 0.65 1.15 1.72 1.22

similar for both robots, being 132.09 for DRRT-PROBLP
and 128.85 for DRRT-SLLP. This indicates that DRRT-
PROBLP robot did not need to deviate far from the global
path to achieve the safety improvement.

We also tracked the number of individual trials in which
DRRT-PROBLP received fewer collisions than DRRT-
SLLP. DRRT-PROBLP had fewer collisions in 2470 trials,
DRRT-SLLP had fewer in 285 trials, and in 1620 trials
both had the same number. Interestingly, the DRRT-PROBLP
robot reached the goal first in 2035 of the trials, with
the DRRT-SLLP robot arriving first in 2240. This again
indicates that the safety gains came at almost no detriment
to path length.

In SP-1, with the obstacles being slower than the robot,
DRRT-PROBLP averaged only 0.05 collisions per trial, and
had no collisions in 94% of trials. DRRT-SLLP had a much
higher average of 0.65, and only 56% of trials were collision-
free. In SP-2, the obstacles moved with the same speed
as the robot, and DRRT-PROBLP had 0.13 collisions on
average, with 88% of trials being collision-free. In this speed
mode, DRRT-SLLP had only 32% collision-free trials. Not
surprisingly, SP-3 was the most challenging one, as having
the obstacles moving faster than the robot meant there could
be situations in which the robot simply did not have time
to maneuver around the obstacle before being hit. This
had a large effect on the performance of DRRT-SLLP,
which averaged 1.72 collisions and had collisions in 80%
of the trials. Despite the difficulty of this mode, however,
DRRT-PROBLP averaged only 0.65 collisions and had zero
collisions in 54% of the trials. Speed mode 4 averaged 0.24
collisions and 81% collision-free trials for DRRT-PROBLP,
and 1.22 collsisions and 33% collision-free trials for DRRT-
SLLP.

Unsurprisingly, both robots had the lowest average number
of collisions on Map 1, which has no static obstacles.
The averages were 0.16 and 0.90 for DRRT-PROBLP and
DRRT-SLLP respectively. The most challenging map for
both robots was Map 3, having 0.33 average collisions for
DRRT-PROBLP and 1.75 for DRRT-SLLP. The second
most challenging map was Map 6, having 0.33 collisions
for DRRT-PROBLP and 1.33 for DRRT-SLLP. Maps 2, 4,
and 5 performed slightly better, having 0.27, 0.25, and 0.30
average collisions for DRRT-PROBLP, and 1.15, 1.10, and

0.94 average collisions for DRRT-SLLP.
We conjecture that the reason some maps performed better

is related to the way the static obstacles are arranged. Maps
2, 4, and 5 have a scattered obstacle layout, with many small
static obstacles spread across the map. In contrast, Maps 3
and 6 are more structured, consisting of long, contiguous
walls with large free spaces between them. In the scattered-
obstacle maps, the static obstacles can be avoided with
relatively small adjustments to the trajectory of the robot,
making it possible to take a relatively direct path to the goal.
In the environments with walls, the robot may have to make a
long detour if it finds itself trapped in a dead end, increasing
the time spent in the environment and therefore the number
of chances to be hit by an obstacle.

We measured the planning times for our implementation
of each algorithm and found that DRRT-PROBLP took an
average of 117 ms to plan each action, whereas DRRT-
SLLP took 149 ms. Intuitively, DRRT-PROBLP should have
a higher planning time because it has a more complicated
local planner, but this result suggests the opposite. We believe
the reason for the superior performance of DRRT-PROBLP
is due to the difference in the DRRT for each algorithm.
The DRRT in DRRT-PROBLP only needs to consider static
obstacles and therefore only needs to replan when new static
obstacles are observed, but the DRRT in DRRT-SLLP has to
handle dynamic obstacles as well as static obstacles, causing
it to undergo the expensive replanning operation much more
frequently.

VIII. CONCLUSION AND FUTURE WORK

We have presented PROBLP, a probabilistic local planner,
for navigating safely in dynamic, unknown, continuous,
and cluttered environments. We showed that this algorithm
outperforms the straight-line local planner algorithm we used
for comparison.

In future work, we would like to use informed hyperpa-
rameter optimization techniques, such as evolutionary algo-
rithms, to tune the algorithm automatically. We would also
like to extend our algorithm to multi-robot safe navigation
and to non-holonomic robots, and to make it more robust
with respect to uncertainties in the range sensor observations
and in the positions of the robot and the goal. Finally,
because we have so far only developed this approach for use



in 2D environments, we would be interested in extending the
algorithm to work in higher-dimensional planning spaces.

IX. ACKNOWLEDGMENT

The authors thank Arash Roshanineshat and Utkarsh Patel
for their assistance in developing the simulator.

REFERENCES

[1] J.P. van den Berg and M.H. Overmars. “Roadmap-
based motion planning in dynamic environments”. In:
IEEE Transactions on Robotics 21.5 (2005), pp. 885–
897.

[2] A. Elfes. “Using Occupancy Grids for Mobile Robot
Perception and Navigation”. In: Computer 22.6
(1989), pp. 46–57.

[3] Dave Ferguson, Nidhi Kalra, and Anthony Stentz.
“Replanning with RRTs”. In: Proceedings of the IEEE
International Conference on Robotics and Automation,
ICRA. 2006, pp. 1243–1248.

[4] P. Fiorini and Z. Shiller. “Motion Planning in Dynamic
Environments Using Velocity Obstacles”. In: The In-
ternational Journal of Robotics Research 17.7 (1998),
pp. 760–772.

[5] Oren Gal, Zvi Shiller, and Elon Rimon. “Efficient
and safe on-line motion planning in dynamic envi-
ronments”. In: Proceedings of the IEEE International
Conference on Robotics and Automation, ICRA. 2009,
pp. 88–93.

[6] M. Kallman and Maja Mataric. “Motion planning us-
ing dynamic roadmaps”. In: Proceedings of the IEEE
International Conference on Robotics and Automation,
ICRA. 2004, pp. 4399–4404.

[7] Sertac Karaman and Emilio Frazzoli. “Incremental
sampling-based algorithms for optimal motion plan-
ning”. In: Proceedings of the Robotics Science and
Systems, RSS. 2010.

[8] Sertac Karaman et al. “Anytime motion planning using
the RRT”. In: Proceedings of the IEEE International
Conference on Robotics and Automation, ICRA. 2011,
pp. 1478–1483.

[9] Lydia E. Kavraki et al. “Probabilistic roadmaps
for path planning in high-dimensional configuration
spaces”. In: IEEE Transactions on Robotics and Au-
tomation 12.4 (1996), pp. 566–580.

[10] Steven M. Lavalle. Rapidly-Exploring Random Trees:
A New Tool for Path Planning. TR 98-11. Iowa State
University, 1998.

[11] Maxim Likhachev et al. “Anytime Dynamic A*: An
Anytime, Replanning Algorithm.” In: Proceedings of
the International Conference on Automated Planning
and Scheduling, ICAPS. 2005, pp. 262–271.

[12] Venkatraman Narayanan, Mike Phillips, and Maxim
Likhachev. “Anytime safe interval path planning
for dynamic environments”. In: Proceedings of the
IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS. 2012, pp. 4708–4715.

[13] Stéphane Petti and Thierry Fraichard. “Safe motion
planning in dynamic environments”. In: Proceedings
of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, IROS. 2005, pp. 2210–2215.

[14] Mike Phillips and Maxim Likhachev. “SIPP: Safe
interval path planning for dynamic environments”.
In: Proceedings of the IEEE International Conference
on Robotics and Automation, ICRA. 2011, pp. 5628–
5635.

[15] Cyrill Stachniss and Wolfram Burgard. “An integrated
approach to goal-directed obstacle avoidance under
dynamic constraints for dynamic environments”. In:
Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, IROS. 2002,
pp. 508–513.

[16] Anthony Stentz. “Optimal and efficient path planning
for partially-known environments”. In: Proceedings of
the IEEE International Conference on Robotics and
Automation, ICRA. 1994, pp. 3310–3317.

[17] Jur Van Den Berg, Dave Ferguson, and James Kuffner.
“Anytime path planning and replanning in dynamic
environments”. In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, ICRA.
2006, pp. 2366–2371.

[18] David Wilkie, Jur Van Den Berg, and Dinesh
Manocha. “Generalized velocity obstacles”. In: Pro-
ceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS. 2009, pp. 5573–
5578.

[19] Matt Zucker, James Kuffner, and Michael Branicky.
“Multipartite RRTs for rapid replanning in dynamic
environments”. In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, ICRA.
2007, pp. 1603–1609.


	Introduction
	Related Work
	Problem Statement
	Probabilistic Local Planner (ProbLP)
	Trajectory Sampling: Probability Distribution
	Target Distribution
	Obstacle Distribution

	Trajectory Sampling: Selecting the Candidate Trajectories
	Trajectory Sampling: Selecting the Final Trajectory

	Combining ProbLP with a Global Planner
	Experiments
	Results and Discussion
	Conclusion and Future Work
	Acknowledgment

