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ABSTRACT 
Video accessibility is crucial for blind and low vision users for equi-
table engagements in education, employment, and entertainment. 
Despite the availability of professional description services and 
tools for amateur description, most human-generated descriptions 
are expensive and time consuming, and the rate of human-generated 
descriptions simply cannot match the speed of video production. 
To overcome the increasing gaps in video accessibility, we devel-
oped a system to automatically generate descriptions for videos and 
answer blind and low vision users’ queries on the videos. Results 
from a pilot study with eight blind video afcionados indicate the 
promise of this system for meeting needs for immediate access to 
videos and validate our eforts in developing tools in partnership 
with the individuals we aim to beneft. Though the results must be 
interpreted with caution due to the small sample size, participants 
overall reported high levels of satisfaction with the system, and all 
preferred use of the system over no support at all. 

CCS CONCEPTS 
• Human-centered computing → Accessibility technologies; 
Accessibility systems and tools. 
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Video Accessibility; Video Description; Blind and Low Vision Users; 
Artifcial Intelligence 

ACM Reference Format: 
Aditya Bodi, Pooyan Fazli, Shasta Ihorn, Yue-Ting Siu, Andrew Scott, Lothar 
Narins, Yash Kant, Abhishek Das, and Ilmi Yoon. 2021. Automated Video 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for components of this work owned by others than the 
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specifc permission 
and/or a fee. Request permissions from permissions@acm.org. 
CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan 
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM. 
ACM ISBN 978-1-4503-8095-9/21/05. . . $15.00 
https://doi.org/10.1145/3411763.3451810 

Description for Blind and Low Vision Users. In CHI Conference on Hu-
man Factors in Computing Systems Extended Abstracts (CHI ’21 Extended 
Abstracts), May 8–13, 2021, Yokohama, Japan. ACM, New York, NY, USA, 
7 pages. https://doi.org/10.1145/3411763.3451810 

1 INTRODUCTION 
In an era of commonly-adopted virtual environments, online videos 
are a common medium for engagement. Nevertheless, the vast 
majority of videos remain inaccessible to blind and low vision 
people. These individuals face unique challenges in our modern 
environment, where much critical information related to education, 
employment, entertainment, and community is presented in the 
form of digital videos. Inaccessible information can result in social 
exclusion or become life threatening if individuals require access 
to it in order to make decisions related to their health and safety. 
A longstanding way to bridge this gap is by adding description 
to videos. Video description, also referred to as audio description 
or simply description, facilitates non-visual access to visual com-
ponents of a video by providing a narrative audio track that is 
synchronized with the video. Narrations relay information about 
settings, actions, on-screen text, and any other visual information 
that would otherwise be missed. 

Professional video descriptions in live and recorded formats 
have been promoted since the 1920s; however, similar to the ad-
vent of novice-created videos for social media, such as YouTube, 
video description has evolved to warrant contributions from non-
professionals who can fll in more immediate needs for video acces-
sibility. This shift from professional to amateur description became 
possible in 2013, when the Smith-Kettlewell Eye Research Institute 
(SKI) launched a web-based tool called YouDescribe [35]. YouDe-
scribe enables anyone to record and upload descriptions of YouTube 
videos. The platform has resulted in a community of more than 
3000 volunteer describers and an active wish list where blind and 
low vision viewers can request descriptions for videos. However, 
92.5% of videos on the YouDescribe user wish list remain unde-
scribed. The time, training, and confdence needed to create high 
quality descriptions were hypothesized to limit potential describers 
from completing more descriptions. To address these barriers, we 

https://doi.org/10.1145/3411763.3451810
https://doi.org/10.1145/3411763.3451810
mailto:permissions@acm.org
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designed and developed a system to automatically generate video 
descriptions and answer blind and low vision users’ queries on 
the videos without sighted assistance. We hypothesize that greater 
efectiveness and usability of the developed system will promote 
broader equity in video and information accessibility by reducing 
dependence of blind viewers on sighted volunteers. 

1.1 Contributions 
Video descriptions typically ofer information in two formats: 1) 
inline descriptions that play concurrently with a video and embed 
information within natural gaps in a video’s audio; and 2) extended 
descriptions that play while a video is paused, so that more infor-
mation can be conveyed without imposing time limits. This paper 
investigates the application of a new video accessibility system that 
maintain the two formats for description with innovations regard-
ing the mode and delivery. The system consists of two main parts: 
1) an artifcial intelligence (AI)-based tool, called NarrationBot, 
that generates inline or extended baseline descriptions focusing on 
describing scenes in the video; and 2) an AI-based tool, called In-
foBot, that delivers extended on-demand descriptions by pausing 
the video and providing additional information as dictated by a 
viewer’s queries. InfoBot facilitates blind and low vision viewers’ 
engagement with videos through asking questions and requesting 
descriptions. We evaluated the system with eight blind and low 
vision users. Though the results must be interpreted with caution 
due to the small sample size, participants overall reported high 
levels of satisfaction with the system under diferent conditions, 
and all preferred use of the system over no support at all. 

2 BACKGROUND AND STATE OF THE ART 
There has been a wide range of work performed in the feld of 
human-computer interaction (HCI) and accessibility for blind and 
low vision users. Advances have occurred in visual graphics [18], 
data visualizations [33], maps [22, 23], programming [26], and 
video games [3, 13, 28]. For video accessibility, tools have been 
developed to facilitate authoring descriptions by sighted describers. 
LiveDescribe [4] was the frst known computer-assisted video de-
scription technology, followed by various prototype softwares that 
used computer vision techniques, such as face and text recogni-
tion, to extract visual content from videos [11, 12] and support 
describers’ ability to create and refne descriptions [25]. These tools 
have become the foundation for systems that can automatically 
detect silent periods within a video in which descriptions can be 
inserted, pause a video when extended descriptions are warranted, 
and decrease the human labor needed to produce descriptions. How-
ever, none of these tools can generate partial or full descriptions 
automatically. 
The machine learning approaches to video description, dominated 
by deep learning, are usually divided into two sequential stages: 
1) visual content extraction or the encoding stage and 2) text gen-
eration or the decoding stage. For encoding, convolutional neural 
networks (CNNs) [31] are used to learn visual features, and for 
decoding, diferent variations of recurrent neural networks (RNNs), 
such as long short-term memory (LSTM) [15] and gated recur-
rent units (GRU) [6] are used [17]. Recent state-of-the-art methods 
[21, 30] have replaced the RNNs with BERT [9] due to the success 
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of Transformers [32]. The output caption can be a single sentence 
or multiple sentences. Our work also uses CNNs and RNNs and 
focuses on generating descriptions from representative keyframes 
of the input video. In a recent work, we developed a human-in-
the-loop machine learning (HILML) approach to facilitate novice 
describers’ ease of authoring video descriptions [36, 37]. The devel-
oped system generates baseline video descriptions that are then re-
vised by human volunteers. This human-AI collaboration produces 
high-quality video descriptions while requiring reduced efort from 
volunteer describers. In contrast, this work takes a step towards 
removing humans from the loop. 

3 SYSTEM 
We built a system for automatically generating baseline and on-
demand descriptions for videos. There are several unique features 
to each and common features for both. Figure 1 shows the overall 
architecture of the developed system. 

3.1 Baseline Description 
Baseline descriptions inform blind and low vision users about the 
visual components of a video, such as the main objects; actors, the 
spatial relations and interactions between them, and their actions; 
on-screen text; and the setting, costumes, and lighting. We devel-
oped a tool, called NarrationBot, consisting of various modules to 
automatically generate baseline descriptions. A beneft of our mod-
ular approach is that as technology matures in the future, modules 
can be replaced by their improved counterparts. Below we explain 
diferent modules of the developed tool. 

3.1.1 Keyframe Selection. YouTube videos normally play at 30 or 
60 frames per second, too many frames to efciently work with and 
not much visually changing between them. Many of these frames 
capture a blurry, unclear snapshot of objects in the scene. Hence, 
this module selects a subset of frames, or keyframes, which repre-
sent the main events in the video clearly. To select the keyframes, 
we sample ten frames per second of video and run a pre-trained 
YOLOv3 [27] object detection model on each of the extracted frames. 
Each frame is given a score based on the confdences of the detected 
objects. Since the object detection model often returns many over-
lapping detections of the same object, we choose only the highest 
confdence detection of each distinct object in the frame. If we let 
co,i,f denote the confdence of the ith instance of the detection of 
object o in the frame at timestamp f , the frame score is given by Õ 

2score(f ) = max c (1)o,i,f . i o 

After manual tuning the granularity of our keyframe selection 
algorithm, we found that extracting one keyframe every six seconds 
on average led to best results while also keeping the compute costs 
manageable. Concretely, given the previous keyframe timestamp 
Fn and a target interval T = 6 between keyframes, we choose the 
next keyframe timestamp Fn+1 to be 

Fn+1 = argmax score(f )(f − Fn )(Fn + 2T − f ). (2) 
f 

3.1.2 Image Caption Generation. This module uses the Pythia [17] 
caption generation model to create a description for every selected 
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Audio Inser�on

 Ask a Ques�on 
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Speech to Text
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Video Scene 
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Text 
Summariza�on

Baseline 
Descrip�ons

Figure 1: The system architecture for generating baseline (NarrationBot) and on-demand (InfoBot) descriptions for videos. 

keyframe. The Pythia model uses a Bottom-up-Top-Down (BuTD) 
[1] attention network for visually-grounded language modeling. 
The bottom-up part is composed of two CNNs to identify objects 
and annotate bounding boxes in the images. The top-down part, 
composed of two LSTM networks, conditions on these detected ob-
jects through soft attention to generate text. Object detections from 
the bottom-up network are passed to the top-down language model 
for next word prediction. The bottom-up network was trained on 
ImageNet [8], and the top-down network was trained on the COCO 
dataset [20]. 

3.1.3 Scene Detection. This module partitions the video into a 
sequence of scenes of varying time spans using Microsoft Azure 
Video Indexer [16]. Scenes are defned as a set of consecutive frames 
that are semantically related and temporally adjacent, depicting a 
high-level concept or story. The scene is our base unit for generating 
and embedding baseline descriptions within a video. We use the 
information from the dialog timestamps, extracted by ListenByCode 
API [5], to merge the scenes having a continuous dialog element. 

3.1.4 On-Screen Text Extraction. Text is a rich source of informa-
tion in videos. This module extracts captions and scene text (e.g., 
license plates, building and street signs, handwritten documents) 
that convey information that may not be present in the audio. Using 
the selected keyframes to extract the on-screen text proved to be 
less than ideal because the text would occasionally be in the process 
of fading in or out since it is not of interest to the object detection 
model we use for selecting keyframes. Thus, we run an optical 
character recognition (OCR) API [2] on every extracted frame to 
ensure we do not miss any text. This produces a large collection of 
texts often repeated from frame to frame, which we must then flter 
and select the best representatives out of. We split the detected 
texts into clusters based on similarity across consecutive frames 
using a Levenshtein distance metric [19]. After choosing one text 
from each cluster in which the text remains very similar for at least 
fve frames, we do a further pass in which we remove non-ASCII 
characters and remove any text that has appeared at least three 

times previously in the chosen texts. This is to prevent watermark 
logos from being read every time the text on screen is read. 

3.1.5 Text Summarization. This module generates a baseline de-
scription for each scene by summarizing the captions generated 
for the selected keyframes. We pick the three most distinct but also 
most repeated captions in the scene by calculating their pairwise 
similarity scores and concatenate them. We use the BLEU score 
[24] to obtain the similarity between two captions. The captions 
with a BLEU score of above 40% are put in the same cluster. The 
clusters are then sorted by the number of captions with the sum of 
BLEU scores of all individual captions in each cluster breaking ties. 
After sorting, one caption with the highest BLEU score is chosen 
from each of the top three clusters. The selected three captions are 
summarized into a baseline description for the scene. 

3.1.6 Text to Speech and Audio Insertion. As the fnal part of the 
process, this module converts descriptions from text to speech and 
fnds appropriate positions in the video to play them. A scene’s 
description is played between the scene’s start and end times. The 
system fnds empty gaps for each scene in the video, which are 
sections with no background music, speech, or dialog. The audio 
description is played inline if the length of an empty gap is suf-
cient to insert it. Otherwise, the video is paused and an extended 
description is played. 

3.2 On-Demand Description 
On-demand descriptions, generated by InfoBot, provide more in-
formation in real time when requested or asked by a user. InfoBot 
works by frst identifying a frame from the video at the point where 
the viewer decides to pause it. Occasionally, the point where the 
viewer pauses contains blurred objects (due to motion, for example) 
or lacks vital visual information, in which case InfoBot automati-
cally refnes the choice of keyframe to be close to but not exactly 
the point at which the video is paused. The two main functionalities 
of InfoBot are described below. 
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Question: What is the woman wearing?
InfoBot Answer: A long sleeve shirt and pants

Question: Is there a car in this video?
InfoBot Answer: Yes

Question: What kind of dog is it?
InfoBot Answer: German Shepherd

Question: How big is the dog?
InfoBot Answer: Medium sized

Figure 2: Blind and low vision participants’ questions and answers with InfoBot. 

3.2.1 Requesting a Description. Users can request a description 
at any instant of the video. The selected keyframe will have the 
description as a caption. This description is obtained and read to the 
user. This kind of functionality will give the user an option to know 
the information about the current instant of the video. The users 
can use this functionality by pressing the ‘D’ key on the keyboard. 
The video will be auto-paused while the additional description is 
being read out. The video will be auto-played once the complete 
description is read out. 

3.2.2 Asking a Qestion. Users can pose natural language ques-
tions about visual elements of a video and get natural language 
responses back in real time. For automatically answering queries 
without humans in the loop, we make use of the visual dialog 
model [7]. This model is trained on 120k examples of question-
answer dialogs paired with images from the COCO dataset [20] 
collected via a 2-person chat interface where one side cannot see 
the image and is tasked with asking questions to understand the 
image better. Specifcally, given an image, dialog history consisting 
of a sequence of question-answer pairs, and a follow-up question, 
this model predicts a free-form natural language answer to the 
question. This model extracts attention-based [1] object detection 
features based on Mask-RCNN [14] for each image and combines 
these features with the dialog history in an LSTM network to pre-
dict the answer. Users can press the ‘Q’ key to ask a question on the 
video, which is recorded via a microphone. A pause at the end of the 
user’s speech terminates the recording. We convert the question 
to the corresponding text. Next, we feed the relevant keyframe, 
the user’s question, and the previous dialog history (if available) 
as inputs to the visual dialog model to generate an answer. The 
answer received from the visual dialog model is converted back to 
audio via a text-to-speech API and read aloud to the user. The visual 
dialog model is capable of handling multiple questions allowing 
the user to ask/clarify their questions better. Hence, users can ask 
as many questions as they wish at any particular instance of the 
video. Figure 2 shows sample questions and answers our blind and 
low vision participants had with InfoBot. 

4 EXPERIMENTS AND USER STUDY 

4.1 Experimental Design 
We used a mixed methods design to evaluate satisfaction with the 
system for blind and low vision users. For the qualitative com-
ponent, we solicited written feedback to open-ended questions 
regarding participants’ opinions about the system and its utility. 

For the quantitative assessment, we used a randomized, multivari-
ate repeated measures design with six system conditions outlined 
below. Six videos1 with similar content and length were chosen 
from the YouDescribe wish list to be used in combination with the 
system. Each participant was administered all six conditions across 
all six videos in random order and with random assignment of 
system conditions to videos. The videos we used in the experiment 
were related to dog rescues. All videos were about fve minutes 
and shared the same narrative components to maintain consistency 
between videos: background information, specifc setting of the 
rescue, treatments for injuries, and an adoption. Before beginning 
the study, each participant also completed an interactive tutorial 
session to learn how to use NarrationBot and InfoBot while watch-
ing a video. All videos and the tutorial were presented in English 
and all InfoBot and NarrationBot support was provided in English 
as well. After successfully completing the tutorial, each participant 
was administered videos under each of the following six conditions: 

Condition 1 – without NarrationBot and without InfoBot. 
This condition does not allow access to any tools of the system or 
provide any extra support. 

Condition 2 – without NarrationBot and with InfoBot. This 
condition does not allow access to NarrationBot, but users can 
request descriptions or ask questions on the videos through the 
interactive InfoBot. 

Condition 3 – with NarrationBot and without InfoBot. This 
condition has no InfoBot functionality but provides baseline de-
scriptions via NarrationBot. 

Condition 4 – with HILML and without InfoBot. This con-
dition is similar to the third condition. In condition 4, however, 
baseline descriptions are provided by NarrationBot and then re-
vised by sighted volunteers (HILML). The revised descriptions are 
converted to audio and played inline or extended. The audio voice 
is identical to that of the system. Users are not informed whether it 
is condition 3 or 4. 

Condition 5 – with NarrationBot and with InfoBot. This con-
dition allows users access to both tools of the system: NarrationBot 
and InfoBot. The baseline descriptions are provided by NarrationBot. 

Condition 6 – with HILML and with InfoBot. This condition 
is similar to condition 5. The only diference is that the baseline 
descriptions are provided by NarrationBot and then revised by 

1Note that this research was carried out at SFSU, and consistent with academic stan-
dards, these six YouTube videos were used only for the purpose of validating the idea(s) 
proposed in the paper. Figure 2 reproduced with permission from the video authors. 
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Table 1: InfoBot usage statistics. Mean number of uses per user with an 80% confdence interval. 

NarrationBot 
+ InfoBot 

HILML 
+ InfoBot InfoBot only 

Total for all 
conditions 

Number of questions asked 14.63 [7.49, 21.77] 3.00 [1.29, 4.71] 8.38 [3.55, 13.21] 8.67 [3.16, 14.18] 
Number of descriptions requested 19.50 [15.64, 23.36] 8.00 [5.14, 10.86] 15.88 [7.79, 23.97] 14.46 [8.61, 20.31] 
Total number of InfoBot uses 34.13 [23.54, 44.72] 11.00 [6.71, 15.29] 24.25 [11.72, 36.78] 23.13 [12.44, 33.82] 

Table 2: User understanding, enjoyability, and satisfaction of videos under six diferent system conditions. 

Ability to understand 
video Enjoyability of video 

Overall satisfaction 
with video 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 
Condition 1 – No support 
Condition 2 – InfoBot only 
Condition 3 – NarrationBot only 
Condition 4 – HILML only 
Condition 5 – NarrationBot + InfoBot 
Condition 6 – HILML + InfoBot 

2.38 1.60 
4.25 1.58 
5.00 1.07 
5.00 0.76 
5.00 1.07 
5.50 0.53 

2.75 1.75 
4.13 1.25 
4.50 1.51 
4.88 0.83 
4.75 1.16 
4.75 0.71 

2.63 1.30 
4.50 1.31 
4.75 1.16 
4.75 0.89 
4.88 1.13 
4.88 0.83 

sighted volunteers (HILML). The revised descriptions are converted 
to audio and played inline or extended. The audio voice is identical 
to that of the system. Users are not informed whether it is condition 
5 or 6. 

After each video, participants completed a brief survey to provide 
feedback on ease of use, comprehension, enjoyment, and overall 
satisfaction for the tools available during that video. All questions 
use a 6-point Likert-type scale, with higher scores indicating a 
more favorable rating. After completing all six videos, participants 
completed a fnal survey to provide demographic information and 
overall impressions of the system, including written qualitative 
responses. 8 participants with an average age of 38 and all fuent in 
English completed the study. One of these participants is low vision 
(large print for reading, requires audio description for videos), and 
seven are blind. Five participants are male and three are female; 
one is Asian-American, two are Latinx, three are White, and one 
participant chose not to disclose race/ethnicity. All participants 
have attended at least some college, and two have earned master’s 
degrees. Participants indicated that they watch YouTube and videos 
more generally on a daily / weekly basis. Below, we present de-
scriptive statistics on the use of the system and some qualitative 
responses from these participants. 

4.2 Results 
4.2.1 InfoBot Usage. InfoBot was used by each participant ∼23 
times per fve minute video, with roughly 9 of those uses in the 
service of asking a question (‘Q’ key), and 14 to request a description 
(‘D’ key). Table 1 shows the mean number of times the InfoBot 
description (‘D’ key) and question-answering (‘Q’ key) functions 
were used by participants. Though results must be interpreted with 
caution due to the small sample size, participants tended to use the 
description function more frequently than the question function 
across all conditions. We believe the relative ease of requesting 
descriptions instead of asking questions could have led to greater 
frequency of use for the description functionality. 

These results also show that participants used InfoBot more 
frequently when the information received via other means was 
less accurate. In the InfoBot-only condition (which had no other 
information provided) and the NarrationBot + InfoBot condition 
(which had some other information provided automatically, but this 
information is not always accurate), they used InfoBot much more 
often than they did in the HILML + InfoBot condition (which has 
verifed information provided automatically). It is interesting that 
participants used InfoBot more frequently in the NarrationBot + 
InfoBot condition than in the InfoBot-only condition, even though 
they had no other information in the latter. 

4.2.2 User Satisfaction. Though the results must be interpreted 
with caution due to the small sample size, participants gave the 
highest scores for understandability and satisfaction to the HILML 
+ InfoBot condition followed closely by both the NarrationBot + 
InfoBot condition and the HILML-only conditions as well as the 
NarrationBot-only condition. Participants also gave relatively posi-
tive scores to the InfoBot-only condition but gave the lowest overall 
scores to the no-support condition. The mean scores and standard 
deviations for all conditions are presented in Table 2. 

After participants had viewed all of the videos, they took a fnal 
survey to provide qualitative feedback about their overall impres-
sions of the system. These responses provide context and insight 
that would be difcult to assess via quantitative methods. Partic-
ipants responded enthusiastically about the idea of this type of 
technology when providing this written feedback. For example, 
one participant wrote, “These tools would be an excellent way to get 
descriptive information on certain video content that would make 
videos more enjoyable. The ability to apply AI to any video out there 
to get visual content described is a game changer for entertainment 
purposes.” Another said, “Using these tools helped me understand the 
smaller details in a video, things I did not even realize I was missing. 
These tools have a lot of potential.” 
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5 DISCUSSION 
Due to the small sample size associated with this pilot data, any 
interpretations must be made with caution; however, the data do 
point to interesting trends that may be emerging from the data. 
First, participants’ lower scores for the no-support condition appear 
to indicate that they have a preference for any available tool that 
can help with video description. This was further supported in 
their qualitative responses; for example, one participant noted, 
“I would defnitely use them if they [were] available” and another 
said, “All forms of audio description should be welcomed, not just 
for us visually impaired people, but [also for] sighted people who 
don’t want to look at a screen after a long day of work, or a long 
commute to and from work.” These results align with the evolution 
of ubiquitous computing [10][34] and ensuing emphasis on the role 
of technology in facilitating blind and low vision individuals’ access 
to information [29]. 

Further, participants gave similar scores to the four baseline-
only and baseline + InfoBot conditions (conditions 3–6). A larger 
sample size will allow for more variability as well as the ability 
to determine whether these four conditions are functionally the 
same for blind and low vision users or whether there are small 
but meaningful diferences between them. A larger sample size 
and expanded qualitative analysis may also provide insight into 
the data regarding the InfoBot usage, which unexpectedly showed 
that participants used the InfoBot more often in the NarrationBot + 
InfoBot condition than they did in the InfoBot-only condition. 

6 CONCLUSION AND FUTURE WORK 
Ultimately, greater efectiveness and usability of the developed 
system will promote broader equity in video and information ac-
cessibility. By maintaining how and what information is generated 
dependent on human factors, AI-driven tools can potentially over-
come gaps in video accessibility that human-driven tools could not 
accomplish alone. In order for AI-driven accessibility systems to 
truly be of service, tools and datasets must be developed in partner-
ship with end users to ensure that they serve the intended purpose. 
For example, although our initial pilot was focused on improving 
access to YouTube videos, a participant identifed a future implica-
tion to “see [how] these tools [could be] implemented as a browser 
extension or be built directly into the YouTube experience, but also be 
available for other video services on the web and in apps.” Finally, our 
shift away from dependency on sighted human assistance better 
empowers blind and low vision individuals to dictate their own 
points of access. 
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