
Human-in-the-Loop Machine Learning to Increase Video 
Accessibility for Visually Impaired and Blind Users 

Beste F Yuksel 1, Pooyan Fazli 2, Umang Mathur 2, Vaishali Bisht 2, Soo Jung Kim 1, 
Joshua Junhee Lee 3, Seung Jung Jin 1, Yue-Ting Siu 4, Joshua A. Miele 5, Ilmi Yoon 2 

1Department of Computer Science, University of San Francisco, San Francisco, CA 
2Department of Computer Science, San Francisco State University, San Francisco, CA 

3Computer Science, University of Washington, Seattle, WA 
4Department of Special Education, San Francisco State University, San Francisco, CA 

5Smith-Kettlewell Eye Research Institute, San Francisco, CA 
ilmi@sfsu.edu (corresponding author) 

ABSTRACT 
Video accessibility is crucial for blind and visually impaired 
individuals for education, employment, and entertainment pur-
poses. However, professional video descriptions are costly 
and time-consuming. Volunteer-created video descriptions 
could be a promising alternative, however, they can vary in 
quality and can be intimidating for novice describers. We 
developed a Human-in-the-Loop Machine Learning (HILML) 
approach to video description by automating video text gen-
eration and scene segmentation and allowing humans to edit 
the output. The HILML approach facilitates human-machine 
collaboration to produce high quality video descriptions while 
keeping a low barrier to entry for volunteer describers. Our 
HILML system was signifcantly faster and easier to use for 
frst-time video describers compared to a human-only control 
condition with no machine learning assistance. The quality of 
the video descriptions and understanding of the topic created 
by the HILML system compared to the human-only condition 
were rated as being signifcantly higher by blind and visually 
impaired users. 
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Video Accessibility; Video Description; Blind Users; Visually 
Impaired Users; Machine Learning; Human-in-the-Loop; 

CCS Concepts 
•Human-centered computing → Accessibility technolo-
gies; Accessibility systems and tools; 

INTRODUCTION 
The World Health Organization (WHO) estimates that roughly 
285 million people worldwide are visually impaired, and 39 
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million of them are blind [11]. In the United States alone, 
there are 10 million people who are visually impaired, of 
whom 1.3 million are blind [11]. Video accessibility for blind 
or visually impaired users1 becomes crucial as online videos 
on websites such as YouTube come to play an essential role in 
our daily lives. However, the vast majority of video material 
on the Internet is currently not accessible to these millions 
of visually impaired people who would signifcantly beneft 
from improved access to videos for education, employment, 
social, and entertainment purposes, thus creating an increasing 
digital divide between blind and sighted users. The United 
Nations Convention on the Rights of Persons with Disabilities 
states that persons with disabilities should be able to access 
services on the Internet (Article 21) and enjoy access to cul-
tural material in accessible formats (Article 30) [55]. The Web 
Content Accessibility Guidelines recommends that audio de-
scriptions be provided for all online videos [17]. Despite such 
international guidelines and standards, there is still a paucity 
of videos that are made accessible through video description 
for blind or visually impaired users. Video description can be 
defned as “Narration added to the soundtrack to describe im-
portant visual details that cannot be understood from the main 
soundtrack alone” [10]. Video description is particularly im-
portant as the speech communication channel is considered to 
be one of the most important modalities for blind and visually 
impaired users [25]. 

A signifcant bottleneck in video accessibility for blind and 
visually impaired users is the time and cost to produce video 
descriptions professionally. Professional video description 
typically has a minimum two-week turnaround time and can 
cost up to hundreds or thousands of dollars for a video [22], 
depending on its length. Alternatives to professional video de-
scription include tools such as MAGpie [1] and LiveDescribe 
[50], which allow anyone to describe videos. The website 
YouDescribe [73] is a free platform with around 2500 sighted 
volunteers that have described over 4000 YouTube videos. 
However, inexperienced describers can struggle to produce 

1In this paper, we use the terms blind and visually impaired users to 
refer to individuals who rely on audio descriptions, tactile graphics, 
or use magnifcation to typically access images. 
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high quality descriptions, with the quality of video descrip-
tions on YouDescribe varying signifcantly depending on the 
volunteers. 

Describing videos requires expertise to clearly but succinctly 
describe scenes within limited gaps in the original soundtrack. 
Video description can be daunting for inexperienced volun-
teers who can be limited by their own vocabulary, writing 
skills, or lack of training. Be My Eyes [23] is an application 
that connects blind and visually impaired people with two 
million sighted volunteers for visual assistance through live 
and generally short video calls. Informal feedback from Be 
My Eyes volunteers to the authors revealed that the diffculty 
of the task and skills required such as language and/or writing 
skills, combined with the public exposure of their work, were 
deterrents to them volunteering for video description. This 
informal feedback, the large discrepancy in volunteer numbers 
between YouDescribe and Be My Eyes, along with the fact 
that Be My Eyes is currently overwhelmed with ffteen times 
the number of sighted volunteers to blind or low-vision users 
[23], suggests that people are willing to help blind and visually 
impaired users, but describing videos is not something that are 
able to or willing to currently do easily. 

In this paper, we turn to the use of Human-in-the-Loop Ma-
chine Learning (HILML) to facilitate easier video description 
for novice describers and to improve the quantity and quality 
of video accessibility for blind and visually impaired users. 
While the algorithms applied in this paper are not new, this 
is the frst time that they have been applied and tested in the 
feld of automated video descriptions for blind and visually 
impaired users. We built a video description interface with 
automated scene segmentation, text generation of images, and 
text generation of text on screen using state-of-art deep learn-
ing Image Captioning [40] and Microsoft AI Video Insight 
(called Video Indexer) [7]. The human is then able to edit the 
generated output, allowing human-machine collaboration to 
produce high quality video descriptions while keeping a low 
barrier to entry for volunteer describers. We evaluated this 
interface on novice describers and compared it to a control 
condition with no machine learning assistance (Experiment 
1). We then asked blind and visually impaired users to rate the 
quality and clarity of the video descriptions produced by the 
two conditions (Experiment 2). Thus, the contributions of this 
paper are as follows: 

1. Design and develop a Human-in-the-Loop Machine Learn-
ing (HILML) system to generate video descriptions for 
visually impaired and blind users. 

2. Demonstrate that the HILML system is faster and easier to 
use for novice video describers than a human only control 
condition. 

3. Demonstrate that the quality of the video descriptions and 
topic understanding is signifcantly higher for the HILML 
system for blind and visually impaired raters compared to a 
human only control condition. 

RELATED WORK 
There have been a wide range of innovative works in the feld 
of HCI and accessibility for blind and visually impaired users 

including visual graphics [48], data visualizations [70], maps 
[53, 56], programming [59], board games [18], video games 
[29, 62, 8], and appliance displays [26]. For the purposes 
of this paper, we focus on research in video description and 
divide the related work in this area into: 1) front-end user 
interface designs for increased video accessibility, and 2) tools 
developed for the automation of video description. 

Video Description and User Interfaces 
Front End User Interface Design for Video Accessibility 
Various researches have investigated the front-end of the user 
interface for increased accessibility of videos and flms for 
blind and visually impaired users. Chapdelaine and Gagnon 
[15] investigated on-demand video description with a Website 
platform that could provide users with extended descriptions 
that exceeded the natural pauses in the soundtrack by paus-
ing the video. Results showed that selecting various video 
description levels was appreciated by around 92% of the users. 
Chapdelaine [14] demonstrated a DVD player with video de-
scription with three extra specialized functions: contextual 
functions, differing quantities of audio description, and recall 
assistance. Results showed that 94% of blind and visually 
impaired users appreciated having these extra functions. 

Encelle et al. [22] investigated annotation-based video en-
richment made up of both speech synthesis and ‘earcons’, 
i.e., non-verbal audio messages to provide information to the 
user. Results showed that earcons could be used together with 
speech synthesis to enhance understanding of videos when ac-
companied with explanations. Encelle et al. [21] investigated 
the use of artifcial pauses in audio described videos in order 
to transmit more information in the video descriptions and sug-
gest the placing of artifcial pauses right after the soundtrack’s 
natural gaps [21]. 

Tools Toward Automated Video Description 
LiveDescribe was the frst known computer-assisted video 
description [13]. It was designed for real-time descriptions 
of live television broadcasts. The two automated features of 
LiveDescribe were: 1) automatic detection of silent periods 
where a describer could choose to add a description, and 2) 
allow descriptions to go beyond the silent periods by automati-
cally pausing the video to accommodate extended descriptions. 
Feedback from describers was positive but also refected the 
high cognitive workload of live description [13]. 

The Collaborative Annotation for Video Accessibility (ACAV) 
project developed a prototype for an adaptive video enrich-
ment system personalized to blind and visually impaired users 
based on decision trees [63]. After an initial learning phase 
with user feedback, the system predicted feedback using a 
decision-tree. The idea of personalizing video descriptions to 
individuals is laudable, however, as stated by the authors, the 
prototype needs to be evaluated with user studies to investigate 
the adaptive system further [63]. 

As part of the e-inclusion project, Gagnon et al. [28, 27] built 
a prototype software for professional describers that used com-
puter vision to extract visual content from videos. They used 
computer vision techniques such as shot transition detection, 
key frame identifcation, face recognition, text spotting, visual 



Figure 1. The workfow of the HILML system: the inputted video is segmented into scenes, automated text is generated for the images and text on 
screen, which can then be edited by the human. The descriptions (with the segmented timings) are synthesized to speech and outputted to play alongside 
the video for the blind or visually impaired user. 

motion, gait/gesture characterization, key-place identifcation, 
key-object spotting, image categorization, and also detected 
silent areas in the soundtrack [28, 27]. Professional describers, 
already have expertise and training in how to suffciently and 
succinctly use language for video description. Gagnon et al. 
[28, 27] displayed detected features on an interactive timeline 
which allowed professional describers to have an overview of 
the frequency and duration of features in the video, as well as 
the silent areas. This helped them to use their expertise in plac-
ing their text in the correct areas. Their work differs from ours 
in two key ways: 1) their computer vision techniques were em-
ployed to produce specifc tasks such as key-face recognition, 
key-object spotting etc while our approach utilizes deep learn-
ing general intelligence of video description generation, and 2) 
their user interface was designed specifcally for professional 
video describers while we aim to lower the barrier to entry for 
novice describers, with human-machine collaboration. 

Kobayashi et al. created audio description synthesis by using 
external metadata of videos on an online platform [45, 46]. 
They provided a script editor to the describers, a prototype 
video player for the blind and visually impaired users, and 
metadata storage exchange between the components. However, 
they found there was a gap in the quality of audio descriptions 
produced by the software against professional narrated de-
scriptions. Kobayashi et al. [46] tested their describer script 
editor, which has a visual interface to edit the video description 
sentences and to specify where on the video timeline to read 
each sentence aloud, on one novice and one professional de-
scriber. Ratings by blind and visually impaired users showed 
signifcantly lower scores for the novice describer [46]. The 
novice describer estimated that it would take three times longer 
without the script editor to produce video descriptions, but no 
control condition was carried out. 

Machine Learning in Video Understanding 
Classical video description approaches combined subject, ob-
ject, and verb (SVO) detection from visual entities with tem-
plate based language models to generate sentences [47]. How-
ever, the release of large datasets revealed that these methods 
cannot cope with the diversity in unconstrained open domain 
videos. The ‘Inverse Hollywood Problem’ approach tried 
to describe a series of actions into semantic tag summaries 
in order to develop a storyboard from instructional videos 
[12]. Many classical SVO approaches [32, 20, 9] were able to 
heuristically parse the videos into a series of key actions and 
generate a script that describes actions detected in the video. It 

also generated key frames depicting the detected causal events 
and defned the series of events into semantics representation, 
but the object and vocabulary/actions were very limited [3]. 

Classical approaches and other advancement such as statistical 
methods were soon replaced with deep learning, the current 
state of the art in video description. In particular, Convolu-
tional Neural Networks (CNNs) [6] are the state of the art 
for modeling visual data recognition [6, 65, 67] and Long 
Short-Term Memory (LSTMs) [34] are now dominating the 
area of sequence modeling such as NLP [16, 31, 66]. The 
deep learning approaches to video description are also usu-
ally divided into two sequential stages, namely, visual content 
extraction and text generation. Visual features represented 
by fxed or dynamic real-valued vectors are produced instead. 
This is often referred to as the video encoding stage. CNN, 
Recurrent Neural Network (RNN), or LSTM are used in this 
encoding stage to learn these visual features, that are then 
used in the second stage for text generation, also known as 
the decoding stage. For decoding, different favours of RNNs 
are used, such as deep RNN, Bi-directional RNN, LSTM, 
Gated Recurrent Units (GRU), Attention or Transformer [69]. 
The resulting description can be a single sentence or multiple 
sentences. Roemmele et. al used a recurrent-neural-network 
architecture to generate stories in a sequence-to-sequence man-
ner [61]. Martin et. al proposed an event representation for 
neural-network-based story generation [51]. Fan et al. created 
a hierarchical model that automatically generates stories con-
ditioning on the writing prompts [24]. Huang et. al introduced 
the visual storytelling task, in which the trained model takes a 
sequence of photos as input and generates a short story that 
narrates this photo sequence [38]. 

Our approach assists sighted users to create video descriptions 
by combining automation using deep learning with human 
input and editing. Such an approach can be considered Human-
in-the-Loop Machine Learning, which we examine next. 

Human-in-the-Loop Machine Learning 
Human-in-the-Loop Machine Learning (HILML) has been 
defned as human and machine learning (ML) processes inter-
acting to solve one or more of the following: 1) Making ML 
more accurate, 2) Getting ML to the desired accuracy faster, 3) 
Making humans more accurate, and 4) Making humans more 
effcient [54]. In this paper, we aim to use HILML to make 
the describers more accurate and effcient, however, in the 
long-term, the data collected can ML to become more accurate 
as well. HILML is an important feld to both the HCI and 



Figure 2. The Describer User Interface for the sighted volunteers in Experiment 1 across the Human-Only (Left Panel) and HILML (Right Panel) 
conditions. The video is played on the left-hand side and the edit/input interface is on the right. In the Human-Only condition, describers need to create 
their own scene segmentations and generate all of the descriptions from scratch. In the HILML condition, the scenes are automatically segmented for 
users. Automated description from images in the video and text on screen is generated for users in script editors, allowing users to edit the automated 
output. Figure 3 shows a close-up of this section. 

Figure 3. Close-up of the Describer User Interface and script editor 
of the HILML system displaying: 1) automated scene segmentation, 2) 
text generation for the description of images in the video, and 3) text 
generation for text that appears on the screen. This automated text can 
then be edited by the describer (the text shown here is the automated 
output with no human edits). 

ML communities and can create important collaborations. For 
example, [54] points out that when machine translation was 
hitting diffculties in making human translation faster and more 
accurate, it was an award winning paper in human-computer 
interaction by Green et al. [64] that created a breakthrough 
with human post-editing for language translation. 

HILML has been used in felds such as assistive robotics [30], 
data analytics [64], systems [35, 72], and audio labeling [43]. 
In the feld of image and video classifcation, Wang et al. [71] 
used HILML to create a semi-automatic method to segment 
foreground moving objects in surveillance videos. They com-
bined human outlining of a small number of moving objects 
with a convolutional neural network to reach similar levels of 
accuracy as a human with less manual work than human-only 

analysis [71]. Pirrung et al. [58] created a HILML image 
organization web application where humans can organize their 
images and the machine learns from these groupings. In return, 
the machine can reposition images or regroups them to refect 
its assessment of the human’s mental model, which may then 
be refned by the user. 

In this paper, we leverage both human and machine intelli-
gence to create a HILML system to aid sighted humans create 
video descriptions for blind or visually impaired users. We 
now describe the HILML system we created for video descrip-
tion generation. 

SYSTEM 
We built a system to assist human volunteers in producing 
video descriptions using a HILML approach. Video descrip-
tion including YouDescribe uses either in-line description or 
extended-description to add descriptions over existing video. 
In-line description is inserted to the original video if audio 
is quiet and is preferred. Extended-description is inserted by 
stopping video fow when the original video audio track is 
too busy with dialog or important sound effect. While both 
descriptions are helpful, descriptions are desired to be succinct 
and minimal while delivering important information of the 
scenes. With these required features, we have designed the 
system as below. 

The following describes the workfow (Figure 1) of the devel-
oped system: 

1. Input Data: Videos for which descriptions have been 
requested are forwarded to the model for further processing. 

2. Scene Segmentation and Key Frame Extraction [Video 
Understanding Module]: The video is segmented into a se-
quence of scenes of varying time spans, and key frames are 
sampled to maintain the appropriate granularity of the scene 
for generating the description. A new scene is created when 
either 1)the background changes, or 2)a new character in the 
foreground enters or exits the scene. A new description is 
generated and attached to the scene. We merge any scenes 
with continuous dialog as the description is read out using 
text-to-speech technology. Describers can also merge scenes 



if they wish. Information extracted from the video is carried 
out by Microsoft Azure Video Indexer API [52]. Text scripts 
with the speaker identity and timestamp tags are provided by 
ListenByCode [49]. 

3. Generating Video Description [Video Understanding 
Module]: Sequences of key frames are processed by the model 
to generate descriptions that best explain the scene in the video. 
The description covers any text in the key frames, people with 
ID (to handle reappearances), gender, emotion, hair color, age, 
objects, and environment. People are recognizable if they are 
known celebrities. We utilize Pythia Deep Learning image 
description generation model [60] for each key frame image 
as there are only a few key frames per scene. We used BLEU 
[57] scores to drop similar sentences and combined sentences 
to build multi sentence baseline text. Some type of text on 
screen is very important and can often be forgotten by volun-
teer describers while other types of text appear on the screen 
such as street signs that should not be read out. We used a 
threshold for time spent on screen to determine whether the 
text should be described. 

4. Validating or Revising the Description [Describer User 
Interface]: Through the describer interface (Figures 2 and 3), 
sighted users can view video scene segments, their associated 
descriptions, and can make their own edits and notes in the 
script editor. Volunteers improve this narration by revising, 
merging, or completing the machine-generated descriptions. 
Compared to free-form descriptions that volunteers create 
from scratch, the proposed process assists sighted volunteers 
to structure and complete the descriptions. Figure 3 shows 
the the scene segmentation, text generation for description of 
images in the video, and text generation for text that appears 
on the screen. When the video plays, each corresponding 
scene gets highlighted and automatically stopped at the end of 
each scene to assist sighted volunteers. Volunteers can replay 
the working scene with a button click. 

5. Playing Video with Description [User Interface for Blind 
and Visually Impaired Users]: The video is played to the 
visually impaired or blind user with audio descriptions syn-
chronized to the original video. Audio is generated using 
IBM Watson’s text-to-speech API. Synthesized video descrip-
tions have been shown to be acceptable to blind and visually 
impaired users [15, 46] and are used by professional video 
description production companies, such as 3play Media [2] 
and Automatic Sync Technologies [68]. ListenbyCode [49] 
to processes the audio track to return the script of the dialog, 
timestamp at each dialog, and the corresponding speakers. 
This information determines the scene segmentations and also 
detects the period where the text-to-speech converted descrip-
tions can be inserted. If a suitable period is not found due 
to busy dialog, then the speech will be inserted as "extended 
description" that pauses the video. 

Machine Learning Algorithm 
When picking the machine learning algorithms described 
above, we tested several state-of-the-art image captioning deep 
learning technologies: Microsoft AI Video Insight, Pythia, the 
winning entry from Facebook AI Research (FAIR)’s A-STAR 

team to the VQA Challenge 2018 [40] and GLACNet, the win-
ning champion from Visual Story Telling challenge for text 
generation [44]. While these state-of-the-art image captioning 
technologies can recognize objects successfully, their vocabu-
lary and sentence generations are too limited by the data sets 
(e.g. Common Object in Context (COCO) data set [39]) to 
successfully describe diverse YouTube videos and actions are 
rarely captured. Although the machine-generated descriptions 
are currently not as good as human-generated ones [36], the 
latest research shows potential for rapid development in the 
near future. For the present time, it allows sighted volunteers 
some support in getting started with video descriptions rather 
than starting from scratch. 

EXPERIMENT 1: DESCRIBING VIDEOS 
Experiment 1 investigates the use of the HILML system for 
video description generation for novice describers. Partici-
pants described videos in two conditions: one with the HILML 
system with machine learning assistance for text generation 
and scene segmentation, and one with no machine learning 
assistance (Figure 2). 

Experimental Design 
In Experiment 1, twenty two participants (11 male, 11 female), 
aged 18 to 34 (mean age of 24.0, SD of 4.45) took part in a 
within-subject design and will be referred to as the describers. 
All describers frst took a short tutorial to familiarize them-
selves with the video description software. Describers were 
then given two videos to describe, one with and one without 
the HILML system. In the HILML condition, automated text 
and scene division was provided which could then be edited 
by the describers if they wished. In the control condition, 
which we refer to as the ‘Human-Only’ condition, describers 
typed out all of their video descriptions from scratch in the 
user interface. Figure 2 show examples of both conditions in 
the user interface. 

Both videos were ‘How-To’ cooking videos of around 2 min-
utes length each. ‘How-to’ videos are requested by visually 
impaired users on YouDescribe. The ‘How-To’ video style 
requires a high degree of quality description which includes: 
1) text that is on the screen to be described if it is present for 
greater than 1 or 2 seconds, and 2) the scene to be described 
every time it changes. The describers were divided into two 
groups: Group 1 described Video 12 with the HILML system 
and Video 23 without the HILML system. Group 2 described 
Video 1 without the HILML system and Video 2 with the 
HILML system. The order of the conditions and group al-
locations was alternated between participants. Both videos 
had music playing throughout with text on screen appearing 
with instructions and ingredients. At the conclusion of each 
video description, describers were asked to fll out a question-
naire on their describing experience including an unweighted 
NASA-TLX survey [33] (a subjective workload assessment 
tool) and were given a short interview. 

2https://www.youtube.com/watch?v=cNj3aOTYdQQ 
3https://www.youtube.com/watch?v=nqXz8hhAYGo 



Figure 4. Describers’ ratings of the HILML and Human-Only condi-
tions. Describers showed (Top:) noticeable preference for the HILML 
system and (Bottom:) felt it was quicker to use. 

Results 

Questionnaire Data 
Questionnaire data shows that describers preferred the HILML 
system and felt that it was quicker than the Human-Only con-
dition (Figure 4) even though both systems were generally 
easy to use for most participants (Figure 5). This is interesting 
as the accuracy of the provided text by the HILML system was 
reported as being somewhat accurate, with the mode response 
being ‘neutral’ (Figure 7). This suggests that even though 
the accuracy of the HILML system was not perfect, it was 
still helpful (as shown in Figure 6) than no machine learning 
assistance at all. 

Time Taken to Complete Video Descriptions 
We performed a t-test on the mean time (in seconds) that 
describers spent describing a video across the HILML and 
Human-Only conditions. Results showed that users described 
videos with the HILML condition (µ = 1285.41, σ = 659.51) 
signifcantly faster than the Human-Only condition (µ = 
1825.45, σ = 658.51) (t(21) = 2.83, p = 0.005, d = 0.60). 
Figure 8 shows the time taken between the two conditions. 
These fndings correspond with the questionnaire data by de-
scribers that the HILML system was quicker to use than the 
Human-Only condition (Figure 4). 

Human-Only HILML Wilcoxon Z p effect size 
Mental demand 
Physical demand 
Temporal demand 
Performance 
Effort 
Frustration 

64.1 (20.7) 
19.8 (20.5) 
40.5 (29.7) 
31.1 (22.3) 
60.7 (18.5) 
43.4 (27.3) 

43.4 (23.9) 
14.8 (17.6) 
28.0 (22.0) 
26.8 (27.8) 
45.7 (23.3) 
23.6 (22.9) 

-2.486572 
-0.813411 
-1.463076 
-0.179176 
-2.199999 
-2.548356 

0.011110 
0.427694 
0.148385 
0.866728 
0.026089 
0.008972 

0.530139 
0.173420 
0.311929 
0.038200 
0.469041 
0.543311 

Table 1. Mean (st. dev.) NASA-TLX values (0=low, 100=high) and re-
sults from Wilcoxon Signed-ranked test. Rows in bold indicate signif-
cant results. 

Describer Workload 
We used the NASA-Task Load Index (TLX) to capture and 
analyze perceived operator workload for the two conditions 
of video description. We inputted the participants’ ratings 
into the NASA-TLX app for iOS [4] which calculated a score 
for each of the six ratings scale results as shown in Table 1. 
Results of the NASA-TLX responses (Table 1) showed that 
describers found the HILML system to be signifcantly less 
mentally demanding, require less effort, and be less frustrat-
ing. This is consistent with the subjective questionnaire data 
that describers found the HILML system to be easier to use, 
less frustrating, and more enjoyable than the Human-Only 
condition (Figure 5). 

Interview Data 
All describers were asked the following three interview ques-
tions: 1) ‘How helpful was the provided text?’, 2) ‘Does using 
the provided text make describing the videos easier?’, and 3) 
‘Is there anything else you’d like to add about the systems you 
used to describe the videos?’. 

Sixteen out of 22 describers felt that the HILML system was 
helpful or easier to use because it provided guidelines: 

“I think the provided text was a good set-up because it allows us 
to get a better idea of what the plot is versus misinterpreting 
it, and I think that is benefcial if you give it to anyone.” 

“[The provided text] provided a lot more help than just going 
in blank without some kind of subtext... it shows the bigger 
picture of what you are going for versus again describing 
something that may not be as relevant allowed me to save a 
lot more time on that.” 

“I feel like it gave me some type of guideline as to what I should 
put, and not too many details.” 

The HILML system also seemed to provide a guideline for 
scene segmentation, with four out of 22 describers making 
comments such as: 
“More helpful part was that it was already booking up into 

the different scenes because the fact that it was automatically 
booking up meant that all I have to do is just create the script.” 
“Like with the second video [Human-Only], it made it a lot 

harder when I had to fnd out which time it started, which time 
it ended for each scene.” 

Four out of 22 describers felt that the descriptions were “vague” 
and “simple” (although two of these describers still felt the 
HILML system did provided them a starting point or a guide-
line) and made comments such as: 
“It just wasn’t that descriptive. It was kind of vague.” 
“It was helpful for starting it. But it wasn’t too helpful in 

being more descriptive. It would be a very simple description 
like ‘a bowl was present’. ” 

Describer interview data was consistent with questionnaire 
data on the neutral level of accuracy of the HILML text gener-
ation (Figure 7) with comments such as: 
“I didn’t think so. I didn’t think it was very accurate some-

times, and if it was just something really simple and then I just 
thought I could describe it better.” 



Figure 5. Describers’ ratings of the HILML and Human-Only conditions for Left: enjoyment of system, Center: frustration caused by system, and 
Right: ease of use of system. 

Figure 6. Describers’ ratings of the helpfulness of the provided text gen-
erated by the HILML system. Most describers agreed or strongly agreed 
that it was helpful. 

Figure 7. Describers’ ratings of the accuracy of the provided text gener-
ated by the HILML system. The most highly rated level was ‘neutral’. 

“It was kind of neutral because I also needed to interpret 
what it was saying. Some of the text was helpful but the other 
things I deleted it completely and start from scratch.” 

We discuss the implications of these fndings, along with those 
from Experiment 2, in the overall Discussion section. 

EXPERIMENT 2: VIDEO DESCRIPTIONS RATED BY 

BLIND AND VISUALLY IMPAIRED USERS 
In Experiment 2, twelve blind and visually impaired partici-
pants were asked to rate the videos created by the describers 
in Experiment 1 (akin to [46]). These participants will be 
referred to as the raters. The typical method reported by raters 
to access images were audio description (9 participants), mag-
nifcation (2 participants), and tactile graphics (1 participant). 
The frequency of general use of video descriptions, were daily 

Figure 8. Mean and standard error of the time taken (in seconds) to com-
plete the video descriptions between the HILML (green) and Human-
Only (blue) conditions. The mean time taken was signifcantly less in the 
HIML condition than the Human-Only condition (p < 0.01). 

or almost daily (5 participants), several times a week (2 par-
ticipants), a few times a month (3 participants), a few times a 
year (1 participant), and never (1 participant). 

Experimental Design 
All raters worked remotely and were each given half of the 44 
videos described (as each of the 22 describers had produced 2 
videos). Six raters were given videos produced by the frst 11 
describers and six raters were given videos described by the 
last 11 describers. Therefore, half of the videos provided to 
each rater were described using the HILML system and half 
were described by the Human-Only condition. The videos 
were split evenly into Video 1 and Video 2. The order of the 
videos provided to raters were randomized. Raters did not 
know which videos had been produced by the HILML system 
or by the Human-Only condition. They were not even aware 
that some videos had been described using the assistance of 
machine learning technology, they were simply told that the 
videos had been described by 11 different describers. They 
were not told which pairs of videos were described by the 
same describer. 

Raters could play each video through and hear the video de-
scriptions being read out by text-to-speech synthesis. After 
watching each video, raters were asked to rate the quality of 
description on a scale of 1 to 5 (‘Poor’ to ‘Excellent’), their un-
derstanding of the topic in the video, and any other comments 
they had about the video. 



Figure 9. Mean and standard error of ratings (Likert Scale 1 (Poor) - 5 
(Excellent)) made by blind and visually impaired users on the quality of 
video descriptions and understanding of topic in videos described by the 
HILML (green) and Human-Only (blue) conditions. Both video descrip-
tion quality (p < 0.01) and understanding of topic (p = 0.01) were rated 
as signifcantly higher in the HILML conditions. 

Results 

Video Description Quality and Topic Understanding 
Results of the Shapiro-Wilk test demonstrated that the data was 
non-parametric. We therefore used Wilcoxon Signed-ranks 
tests on raters’ evaluation on Video Description Quality and 
Topic Understanding. Results showed that both mean video 
description quality was rated signifcantly higher in videos 
created by the HILML system (µ = 3.9394, σ = 0.5276) than 
the Human-Only condition (µ = 3.4303, σ = 0.7328) (Z = 
2.5897, p = 0.0068, r = 0.7476) and that mean understand-
ing of video’s topic was rated signifcantly higher in videos 
created by the HILML system (µ = 4.1720, σ = 0.6650) 
than the Human-Only condition (µ = 3.8417, σ = 0.8026) 
(Z = 2.5001, p = 0.0117, r = 0.7217) (Figure 9). 

Comments By Raters 
The comments provided by the raters were extremely inter-
esting and revealing. Out of the 12 raters, 6 of them used 
the word “favorite”, “excellent”, or “best” in their comments 
of one video. Five out of the 6 were for the HILML system. 
Examples of such sentences include: 
“Good cooking advice, actually describes what TO do and 

not just what is going on. Would say excellent.” [HILML] 
“Excellent! Simple, tactile. All around easy to understand! 

Best so far.” [HILML] 
“This video is probably the best described, gave info on how 
to cut the vegetables and exact measurements.” [Human-
Only] 

The level of detail provided in descriptions was very important 
to raters. Novice describers are known to provide too much 
detail in video descriptions. Raters made comments such as: 

“Too wordy and algorithmic! Would say it is horrible. The time 
stamp helps NO ONE and distracts from purpose of the video. 
Fair. ”[Human-Only] 

“It was not necessary to say [where] the words or items were on 
the screen and that the words faded in or out.” [Human-Only] 

“Too specifed, too confusing to understand.” [Human-Only] 
“Unnecessary descriptions may confuse viewers ‘cut pieces into 
even smaller pieces’ does not help. Bad.” [Human-Only]. 

“The details were very vague and no text shown on the screen 
was even mentioned.” [Human-Only]. 

However the HILML system seemed to be better at guiding 
describers to descriptions that were better received by raters, 
with comments such as: 

“Clear and specifc.” [HILML] 
“This video is an example of the minimum info that should be 
included in all videos. It is not too overly descriptive with 
each step. It lays out what is happening and then reads the 
text for the ingredients.” [HILML]. 

Another category highlighted by raters were the provision 
of scene identifcation or shifts by videos that were created 
using the HILML system. Closely related to this was the 
alignment of the audio and video, which the automated scene 
segmentations provided help with. 
“Weird transitions, bad descriptions of bowls confused me. 

Lack of verbal instruction is an issue. Bad.” [Human-Only] 
“Once again, the pace of the description does not match 

the pace of the video. The description went faster than the 
video thus leaving a huge pause in which nothing was being 
described only music was playing. I have a feeling the video 
was still going. I think the description was done very poorly.” 
[Human-Only] 

“I believe that aligning an audio track with the description 
is much more benefcial in order to prevent any confusion.” 
[Human-Only]. 

Examples of positive comments by videos created by the 
HILML system include: 
“There weren’t any long pauses in the video and it felt as if 

the description was done more carefully and with precision to 
match the pace of the original video.” [HILML] 
“All the descriptions were there. The narrator announced 

scene shifts as well.” [HILML] 

The reading out of text on screen was very important to raters 
and was highlighted in a number of comments. The HILML 
system automatically generates text on screen for the human, 
therefore the lack of text on screen transcription was most 
common for video descriptions created by the Human-Only 
condition. Examples include comments such as: 
“There were far to many gaps in this description and why tell 
me there is instruction on the screen but not read it that does 
not work at all.” [Human-Only] 
“No text was read and there were a large amount of grammat-
ical errors.” [Human-Only] 
“The description of this video was done very poorly. The 

details were very vague and no text shown on the screen was 
even mentioned.” [Human-Only] 
“On-screen text is critical, this is a strong video description.” 

[HILML] 
‘This frst video was done very well. The person describ-

ing gave plenty of details to be able to understand what was 
happening. I really liked that he was reading the text that 
appeared on screen and read it alongside the descriptions.” 
[HILML] 

Many raters commented on the text-to-speech synthesis of 
the video descriptions across both conditions. Traditionally, 



in the literature, synthesized video descriptions have been 
shown to be acceptable to blind and visually impaired users 
[15, 46]. However, the synthesized voice, while acceptable 
created mispronunciations of words such “bowl”: 
“Using an actual human as the describer would be better 

only because this speech synthesizer mispronounces the word 
‘bowl,’ which may confuse some people.” [HILML] 

DISCUSSION 
Results from Experiment 1 showed that novice describers 
found the HILML system to be easier and quicker to use even 
though it was only somewhat accurate. The time taken to 
describe videos was signifcantly less for the HILML system 
and describers reported the HILML system to be less mentally 
demanding, requiring less effort, and to be less frustrating 
using NASA-TLX measures. Interview data showed that de-
scribers found the HILML system to be useful in providing 
guidelines for the level of description detail and scene segmen-
tation. Experiment 2 showed that blind and visually impaired 
users found the videos that were described by the HILML sys-
tem to have a signifcantly higher quality of video description 
and understanding of the topic than the Human-Only control 
condition. The raters’ comments reveal a multi-faceted picture 
as to why this could be. 

Level of Description Detail 
One of the main features of the HILML system was automatic 
text generation for video descriptions. We investigate this 
further by examining the level of detail provided in the video 
descriptions, which was an important factor for both describers 
and raters. One of the biggest issues encountered by novice 
describers, and for the blind and visually impaired users who 
watch their video descriptions, is that novice describers have 
no training or knowledge of the level of detail that is required 
for video descriptions. Video descriptions need to be succinct, 
clear, and to the point. This can vary based on the type of 
the video that is being described and can vary with individual 
preferences across blind and visually impaired users. While 
too little detail can be provided, usually, novice describers 
often err on the side of more descriptions. 

The quality of the video description was rated signifcantly 
higher when created by the HILML system compared to the 
Human-Only control condition, and this was backed-up by 
comments from raters. That is not too say that the HILML 
system level of detail was perfect, but it does suggest that the 
HILML system is providing some type of guidance on the 
level of detail for describers through text automation. This 
was consistent with feedback from describers on the HILML 
system. On the topic of detail, the HILML system captured 
the subtitles/text on screen, and it is extremely worthwhile to 
note that some raters commented on the importance of this. 

Scene Segmentation 
Another important feature of the HILML system was scene 
segmentation of the videos, providing novice describers with 
a framework of where to put their video descriptions. Scene 
segmentation was also very important to blind and visually 
impaired raters. The HILML system also seemed to create a 
more cohesive “fow” for raters, as opposed to a speed that was 

“rushed” in the control condition. The alignment of the audio 
and video tracks and correct division of video segments was 
commented on raters as being crucial to the understanding of 
the topic and may well be part of the reason why the HILML 
system created videos that were rated with signifcantly higher 
understanding of the topic than the Human-Only condition. 

Text to Speech 
The videos were all played back to blind and visually impaired 
raters using synthesized voices with text-to-speech technology. 
Several raters commented that while speech synthesis is gener-
ally acceptable, there were mispronunciation of words such as 
“bowl” and that the voice did not sound natural, such as miss-
ing gaps between sentences. This suggests that the synthesized 
voice could take away from the clarity of the descriptions. 

The raters also highlighted another problem with the text-to-
speech technology which was that there was no human reading 
checking of the text for spelling mistakes and grammatical 
errors. There were several comments by raters across both 
videos created by both the HILML and Human-Only condi-
tions of such errors that were being read out incorrectly by 
the text-to-speech converter. Of course, the describer of the 
‘Human-in-Loop’ part of the system should have been check-
ing for these but volunteer describers either created errors or 
let text with spelling mistakes and grammatical errors pass 
through to the blind and visually impaired users. An additional 
note on this by a blind user who gave informal feedback to 
the authors was that blind and visually impaired individuals 
themselves may wish to lend their own voices to pre-generated 
text for video descriptions. 

Increased Speed and Ease of Use for Novice Describers 
Describers gave feedback that the HILML system was eas-
ier and quicker to use than the Human-Only condition. This 
was backed up by statistical analysis on time taken to de-
scribe videos and NASA-TLX subjective workload assess-
ments. These results are very important for the blind and 
visually impaired community just for the simple fact that sys-
tems that automate text generation and scene segmentation, 
even if they need human input and editing, still make the job 
much easier for volunteer describers. If such a system could 
lower the barrier to entry for volunteer describers, this could 
start increasing the number of video descriptions online and 
start decreasing the huge digital divide and accessibility be-
tween blind and sighted individuals. We had initially hoped 
that the HILML system would lower the barrier to entry for 
describers, which in itself, would have been progress. The fact 
that the HILML system also increased the video description 
quality is a step forward on two fronts. 

Machine Learning Algorithm 
In regards to the state-of-the-art, while the algorithms applied 
in this paper are not new, this is the frst time that they have 
been applied and tested in the feld of automated video de-
scriptions for blind and visually impaired users. This paper 
demonstrates that such algorithms can be used to aid video 
description generation for sighted volunteers. The rapid devel-
opment of such machine learning algorithms could lead to a 
potentially rich feld for automated video descriptions. 



We have referred to the technique used in this paper as the 
human-in-the-loop approach, which is an already established 
one. However, in this specifc case, it is possible to start look-
ing at it instead as a machine-learning-in-the-loop approach, 
where machine learning is being used as a guiding scaffolding 
for volunteers’ work. This idea of machine learning being used 
as a supporting mechanism for people’s work could become 
very important in the feld of volunteer video description for 
blind and visually impaired users. 

Limitations 
It is important to acknowledge that the videos being described 
in this study had music in the background and text on the 
screen. There was no speech or dialogue occurring during the 
videos. Background speech requires a more complex place-
ment of descriptions into the video. Descriptions need to be 
placed where there is no background speech or sometimes the 
video will need to be paused for the description to be inserted. 
This can be challenging for novice describers, especially as 
they have not been trained on how much detail they should 
provide. We address this in our future work section with an 
‘on-demand’ HILML approach. 

It is also important to acknowledge that the accuracy of the text 
generation was rated as being mainly neutral by describers. 
The text-generation machine learning technology is still a 
work-in-progress. However, despite the neutral accuracy of 
the machine learning, describers still found the system easier 
and quicker to use than no help at all, and blind and visually 
impaired users still found the video descriptions to have a 
higher quality. This suggests that the HILML system is help-
ing by providing the bigger picture of the video with scene 
segmentation and the guidance on level of detail. 

Microsoft Cognitive Services is not at the point where it can 
generate connected sentences that tell a story. The task of 
multi-image cued story generation, such as the visual story-
telling dataset challenge, is to compose multiple coherent sen-
tences from a given sequence of images [44]. Such sentences 
are currently not at the level needed to replace the ‘human’ of 
the Human-in-Loop [37], but would improve the speed and 
accuracy substantially more. We address this in our future 
work section with a ‘re-training’ HILML approach. 

Lastly, we do not know how this approach may affect profes-
sional describers. It would certainly be interesting to investi-
gate. There is a phenomenon in learning called the expertise 
reversal effect whereby instructional techniques that are bene-
fcial to beginners can have the reverse effects on more experi-
enced learners [41, 42]. It may be that such as system would 
have to redesigned for the level of expertise of the describer. 

FUTURE WORK 
We are currently working on improving the accuracy and qual-
ity of the machine-generated descriptions. To this end, the 
discrepancy between the machine-generated and revised nar-
rations are recorded and the revised versions are being used 
as input to retrain and improve the accuracy of the machine 
learning model. We also plan to train a visual storytelling 
model [38] to generate a more comprehensive narrative of the 
scene with spatiotemporal coherency. 

Informal feedback from visually impaired and blind users iden-
tifed that ‘on-demand descriptions’ would be helpful when the 
user pauses the video to ask questions using natural language. 
For on-demand descriptions, we will train visual question 
answering [5] and visual dialog [19] models to hold a mean-
ingful dialog with blind and visually impaired users in natural 
language about the content of the video. 

Furthermore, we plan to integrate the HILML system into 
the YouDescribe website. As Experiment 1 with describers 
showed, the HILML system was easier and quicker to use 
than the Human-Only condition. We will thus investigate 
whether our HILML system will reduce the barrier-to-entry for 
volunteer describers on YouDescribe and increase the number 
of video descriptions online. 

Finally, we will compile and release a standardized, well-
structured video description data set under a free, open-source 
license to help the machine learning and vision communities 
advance the state of the art in video understanding. 

CONCLUSION 
We designed and developed a Human-in-the-Loop Machine 
Learning (HILML) approach to automatically generate video 
descriptions and scene segmentation for online videos. Human 
describers could then edit the automated text generated by 
machine learning. Our aim was to improve video accessibility 
by increasing video description ease and speed for novice 
describers as well as increasing video description quality for 
visually impaired and blind users. We compared the HILML 
system to a Human-Only control condition with no machine 
learning assistance with novice describers. Results showed 
that the HILML system was signifcantly faster and easier 
to use, with comments from describers pointing to guidance 
provided by the HILML system on level of text detail and 
scene segmentation. Blind and visually impaired users rated 
the videos described the HILML and Human-Only conditions 
(with no knowledge of the conditions). Results showed that 
they rated the videos created by the HILML system as having 
signifcantly higher quality of video description as well as 
signifcantly higher understanding of the topic presented in the 
video than the Human-Only condition. Extensive comments 
provided by blind and visually impaired users indicate the 
importance of several factors discussed in this paper. 

These promising results, along with the rapid development of 
deep learning techniques, suggest that such technology can 
soon be used by many sighted volunteers around the world 
in the creation of video descriptions for blind and visually 
impaired users. Our hope is that this will start decreasing the 
great digital divide between blind and sighted users. 
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